Shortcuts

Source code for torchgeo.datasets.western_usa_live_fuel_moisture

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""Western USA Live Fuel Moisture Dataset."""

import glob
import json
import os
from collections.abc import Callable, Iterable
from typing import Any

import pandas as pd
import torch

from .errors import DatasetNotFoundError
from .geo import NonGeoDataset
from .utils import Path, which


[docs]class WesternUSALiveFuelMoisture(NonGeoDataset): """Western USA Live Fuel Moisture Dataset. This tabular style dataset contains fuel moisture (mass of water in vegetation) and remotely sensed variables in the western United States. It contains 2615 datapoints and 138 variables. For more details see the `dataset page <https://beta.source.coop/stanford/sar-moisture-conent/>`_. Dataset Format: * .geojson file for each datapoint Dataset Features: * 138 remote sensing derived variables, some with a time dependency * 2615 datapoints with regression target of predicting fuel moisture If you use this dataset in your research, please cite the following paper: * https://doi.org/10.1016/j.rse.2020.111797 .. note:: This dataset requires the following additional library to be installed: * `azcopy <https://github.com/Azure/azure-storage-azcopy>`_: to download the dataset from Source Cooperative. .. versionadded:: 0.5 """ url = 'https://radiantearth.blob.core.windows.net/mlhub/su-sar-moisture-content' label_name = 'percent(t)' all_variable_names = ( # "date", 'slope(t)', 'elevation(t)', 'canopy_height(t)', 'forest_cover(t)', 'silt(t)', 'sand(t)', 'clay(t)', 'vv(t)', 'vh(t)', 'red(t)', 'green(t)', 'blue(t)', 'swir(t)', 'nir(t)', 'ndvi(t)', 'ndwi(t)', 'nirv(t)', 'vv_red(t)', 'vv_green(t)', 'vv_blue(t)', 'vv_swir(t)', 'vv_nir(t)', 'vv_ndvi(t)', 'vv_ndwi(t)', 'vv_nirv(t)', 'vh_red(t)', 'vh_green(t)', 'vh_blue(t)', 'vh_swir(t)', 'vh_nir(t)', 'vh_ndvi(t)', 'vh_ndwi(t)', 'vh_nirv(t)', 'vh_vv(t)', 'slope(t-1)', 'elevation(t-1)', 'canopy_height(t-1)', 'forest_cover(t-1)', 'silt(t-1)', 'sand(t-1)', 'clay(t-1)', 'vv(t-1)', 'vh(t-1)', 'red(t-1)', 'green(t-1)', 'blue(t-1)', 'swir(t-1)', 'nir(t-1)', 'ndvi(t-1)', 'ndwi(t-1)', 'nirv(t-1)', 'vv_red(t-1)', 'vv_green(t-1)', 'vv_blue(t-1)', 'vv_swir(t-1)', 'vv_nir(t-1)', 'vv_ndvi(t-1)', 'vv_ndwi(t-1)', 'vv_nirv(t-1)', 'vh_red(t-1)', 'vh_green(t-1)', 'vh_blue(t-1)', 'vh_swir(t-1)', 'vh_nir(t-1)', 'vh_ndvi(t-1)', 'vh_ndwi(t-1)', 'vh_nirv(t-1)', 'vh_vv(t-1)', 'slope(t-2)', 'elevation(t-2)', 'canopy_height(t-2)', 'forest_cover(t-2)', 'silt(t-2)', 'sand(t-2)', 'clay(t-2)', 'vv(t-2)', 'vh(t-2)', 'red(t-2)', 'green(t-2)', 'blue(t-2)', 'swir(t-2)', 'nir(t-2)', 'ndvi(t-2)', 'ndwi(t-2)', 'nirv(t-2)', 'vv_red(t-2)', 'vv_green(t-2)', 'vv_blue(t-2)', 'vv_swir(t-2)', 'vv_nir(t-2)', 'vv_ndvi(t-2)', 'vv_ndwi(t-2)', 'vv_nirv(t-2)', 'vh_red(t-2)', 'vh_green(t-2)', 'vh_blue(t-2)', 'vh_swir(t-2)', 'vh_nir(t-2)', 'vh_ndvi(t-2)', 'vh_ndwi(t-2)', 'vh_nirv(t-2)', 'vh_vv(t-2)', 'slope(t-3)', 'elevation(t-3)', 'canopy_height(t-3)', 'forest_cover(t-3)', 'silt(t-3)', 'sand(t-3)', 'clay(t-3)', 'vv(t-3)', 'vh(t-3)', 'red(t-3)', 'green(t-3)', 'blue(t-3)', 'swir(t-3)', 'nir(t-3)', 'ndvi(t-3)', 'ndwi(t-3)', 'nirv(t-3)', 'vv_red(t-3)', 'vv_green(t-3)', 'vv_blue(t-3)', 'vv_swir(t-3)', 'vv_nir(t-3)', 'vv_ndvi(t-3)', 'vv_ndwi(t-3)', 'vv_nirv(t-3)', 'vh_red(t-3)', 'vh_green(t-3)', 'vh_blue(t-3)', 'vh_swir(t-3)', 'vh_nir(t-3)', 'vh_ndvi(t-3)', 'vh_ndwi(t-3)', 'vh_nirv(t-3)', 'vh_vv(t-3)', 'lat', 'lon', )
[docs] def __init__( self, root: Path = 'data', input_features: Iterable[str] = all_variable_names, transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, download: bool = False, ) -> None: """Initialize a new Western USA Live Fuel Moisture Dataset. Args: root: root directory where dataset can be found input_features: which input features to include transforms: a function/transform that takes input sample and its target as entry and returns a transformed version download: if True, download dataset and store it in the root directory Raises: AssertionError: if ``input_features`` contains invalid variable names DatasetNotFoundError: If dataset is not found and *download* is False. """ assert set(input_features) <= set(self.all_variable_names) self.root = root self.input_features = input_features self.transforms = transforms self.download = download self._verify() self.dataframe = self._load_data()
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.dataframe)
[docs] def __getitem__(self, index: int) -> dict[str, Any]: """Return an index within the dataset. Args: index: index to return Returns: input features and target at that index """ data = self.dataframe.iloc[index, :] sample = { 'input': torch.tensor( data.drop([self.label_name]).values, dtype=torch.float32 ), 'label': torch.tensor(data[self.label_name], dtype=torch.float32), } if self.transforms is not None: sample = self.transforms(sample) return sample
def _load_data(self) -> pd.DataFrame: """Load data from individual files into pandas dataframe. Returns: the features and label """ data_rows = [] for path in sorted(self.files): with open(path) as f: content = json.load(f) data_dict = content['properties'] data_dict['lon'] = content['geometry']['coordinates'][0] data_dict['lat'] = content['geometry']['coordinates'][1] data_rows.append(data_dict) df = pd.DataFrame(data_rows) df = df[[*self.input_features, self.label_name]] return df def _verify(self) -> None: """Verify the integrity of the dataset.""" # Check if the files already exist file_glob = os.path.join(self.root, '**', 'feature_*.geojson') self.files = glob.glob(file_glob, recursive=True) if self.files: return # Check if the user requested to download the dataset if not self.download: raise DatasetNotFoundError(self) # Download the dataset self._download() self.files = glob.glob(file_glob, recursive=True) def _download(self) -> None: """Download the dataset and extract it.""" os.makedirs(self.root, exist_ok=True) azcopy = which('azcopy') azcopy('sync', self.url, self.root, '--recursive=true')

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources