Source code for torchgeo.datasets.spacenet.spacenet8
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""SpaceNet 8 dataset."""
from typing import ClassVar
from .base import SpaceNet
[docs]class SpaceNet8(SpaceNet):
r"""SpaceNet8: Flood Detection Challenge Using Multiclass Segmentation.
`SpaceNet 8 <https://spacenet.ai/sn8-challenge/>`_ is a dataset focusing on
infrastructure and flood mapping related to hurricanes and heavy rains that cause
route obstructions and significant damage.
If you use this dataset in your research, please cite the following paper:
* https://openaccess.thecvf.com/content/CVPR2022W/EarthVision/html/Hansch_SpaceNet_8\_-_The_Detection_of_Flooded_Roads_and_Buildings_CVPRW_2022_paper.html
.. versionadded:: 0.6
"""
directory_glob = '{product}'
file_regex = r'(\d+_\d+_\d+)\.'
dataset_id = 'SN8_floods'
tarballs: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
0: [
'Germany_Training_Public.tar.gz',
'Louisiana-East_Training_Public.tar.gz',
]
},
'test': {0: ['Louisiana-West_Test_Public.tar.gz']},
}
md5s: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
0: ['81383a9050b93e8f70c8557d4568e8a2', 'fa40ae3cf6ac212c90073bf93d70bd95']
},
'test': {0: ['d41d8cd98f00b204e9800998ecf8427e']},
}
valid_aois: ClassVar[dict[str, list[int]]] = {'train': [0], 'test': [0]}
valid_images: ClassVar[dict[str, list[str]]] = {
'train': ['PRE-event', 'POST-event'],
'test': ['PRE-event', 'POST-event'],
}
valid_masks = ('annotations',)
chip_size: ClassVar[dict[str, tuple[int, int]]] = {
'PRE-event': (1300, 1300),
'POST-event': (1300, 1300),
}