Shortcuts

Source code for torchgeo.datasets.spacenet.spacenet8

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""SpaceNet 8 dataset."""

from typing import ClassVar

from .base import SpaceNet


[docs]class SpaceNet8(SpaceNet): r"""SpaceNet8: Flood Detection Challenge Using Multiclass Segmentation. `SpaceNet 8 <https://spacenet.ai/sn8-challenge/>`_ is a dataset focusing on infrastructure and flood mapping related to hurricanes and heavy rains that cause route obstructions and significant damage. If you use this dataset in your research, please cite the following paper: * https://openaccess.thecvf.com/content/CVPR2022W/EarthVision/html/Hansch_SpaceNet_8\_-_The_Detection_of_Flooded_Roads_and_Buildings_CVPRW_2022_paper.html .. versionadded:: 0.6 """ directory_glob = '{product}' file_regex = r'(\d+_\d+_\d+)\.' dataset_id = 'SN8_floods' tarballs: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': { 0: [ 'Germany_Training_Public.tar.gz', 'Louisiana-East_Training_Public.tar.gz', ] }, 'test': {0: ['Louisiana-West_Test_Public.tar.gz']}, } md5s: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': { 0: ['81383a9050b93e8f70c8557d4568e8a2', 'fa40ae3cf6ac212c90073bf93d70bd95'] }, 'test': {0: ['d41d8cd98f00b204e9800998ecf8427e']}, } valid_aois: ClassVar[dict[str, list[int]]] = {'train': [0], 'test': [0]} valid_images: ClassVar[dict[str, list[str]]] = { 'train': ['PRE-event', 'POST-event'], 'test': ['PRE-event', 'POST-event'], } valid_masks = ('annotations',) chip_size: ClassVar[dict[str, tuple[int, int]]] = { 'PRE-event': (1300, 1300), 'POST-event': (1300, 1300), }

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources