Shortcuts

Source code for torchgeo.datasets.spacenet.spacenet7

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""SpaceNet 7 dataset."""

import os
from typing import ClassVar

from .base import SpaceNet


[docs]class SpaceNet7(SpaceNet): """SpaceNet 7: Multi-Temporal Urban Development Challenge. `SpaceNet 7 <https://spacenet.ai/sn7-challenge/>`_ is a dataset which consist of medium resolution (4.0m) satellite imagery mosaics acquired from Planet Labs' Dove constellation between 2017 and 2020. It includes ≈ 24 images (one per month) covering > 100 unique geographies, and comprises > 40,000 km2 of imagery and exhaustive polygon labels of building footprints therein, totaling over 11M individual annotations. Dataset features: * No. of train samples: 1423 * No. of test samples: 466 * No. of building footprints: 11,080,000 * Area Coverage: 41,000 sq km * Chip size: 1024 x 1024 * GSD: ~4m Dataset format: * Imagery - Planet Dove GeoTIFF * mosaic.tif * Labels - GeoJSON * labels.geojson If you use this dataset in your research, please cite the following paper: * https://arxiv.org/abs/2102.04420 .. versionadded:: 0.2 """ directory_glob = os.path.join('**', '{product}') mask_glob = '*_Buildings.geojson' file_regex = r'global_monthly_(\d+.*\d+)' dataset_id = 'SN7_buildings' tarballs: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': {0: ['SN7_buildings_train.tar.gz']}, 'test': {0: ['SN7_buildings_test_public.tar.gz']}, } md5s: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': {0: ['6eda13b9c28f6f5cdf00a7e8e218c1b1']}, 'test': {0: ['b3bde95a0f8f32f3bfeba49464b9bc97']}, } valid_aois: ClassVar[dict[str, list[int]]] = {'train': [0], 'test': [0]} valid_images: ClassVar[dict[str, list[str]]] = { 'train': ['images', 'images_masked'], 'test': ['images_masked'], } valid_masks = ('labels', 'labels_match', 'labels_match_pix') chip_size: ClassVar[dict[str, tuple[int, int]]] = { 'images': (1024, 1024), 'images_masked': (1024, 1024), }

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources