Source code for torchgeo.datasets.spacenet.spacenet7
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""SpaceNet 7 dataset."""
import os
from typing import ClassVar
from .base import SpaceNet
[docs]class SpaceNet7(SpaceNet):
"""SpaceNet 7: Multi-Temporal Urban Development Challenge.
`SpaceNet 7 <https://spacenet.ai/sn7-challenge/>`_ is a dataset which
consist of medium resolution (4.0m) satellite imagery mosaics acquired from
Planet Labs' Dove constellation between 2017 and 2020. It includes ≈ 24
images (one per month) covering > 100 unique geographies, and comprises >
40,000 km2 of imagery and exhaustive polygon labels of building footprints
therein, totaling over 11M individual annotations.
Dataset features:
* No. of train samples: 1423
* No. of test samples: 466
* No. of building footprints: 11,080,000
* Area Coverage: 41,000 sq km
* Chip size: 1024 x 1024
* GSD: ~4m
Dataset format:
* Imagery - Planet Dove GeoTIFF
* mosaic.tif
* Labels - GeoJSON
* labels.geojson
If you use this dataset in your research, please cite the following paper:
* https://arxiv.org/abs/2102.04420
.. versionadded:: 0.2
"""
directory_glob = os.path.join('**', '{product}')
mask_glob = '*_Buildings.geojson'
file_regex = r'global_monthly_(\d+.*\d+)'
dataset_id = 'SN7_buildings'
tarballs: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {0: ['SN7_buildings_train.tar.gz']},
'test': {0: ['SN7_buildings_test_public.tar.gz']},
}
md5s: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {0: ['6eda13b9c28f6f5cdf00a7e8e218c1b1']},
'test': {0: ['b3bde95a0f8f32f3bfeba49464b9bc97']},
}
valid_aois: ClassVar[dict[str, list[int]]] = {'train': [0], 'test': [0]}
valid_images: ClassVar[dict[str, list[str]]] = {
'train': ['images', 'images_masked'],
'test': ['images_masked'],
}
valid_masks = ('labels', 'labels_match', 'labels_match_pix')
chip_size: ClassVar[dict[str, tuple[int, int]]] = {
'images': (1024, 1024),
'images_masked': (1024, 1024),
}