Source code for torchgeo.datasets.spacenet.spacenet6
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""SpaceNet 6 dataset."""
from typing import ClassVar
from .base import SpaceNet
[docs]class SpaceNet6(SpaceNet):
r"""SpaceNet 6: Multi-Sensor All-Weather Mapping.
`SpaceNet 6 <https://spacenet.ai/sn6-challenge/>`_ is a dataset
of optical and SAR imagery over the city of Rotterdam.
Collection features:
+------------+---------------------+------------+-----------------------------+
| AOI | Area (km\ :sup:`2`\)| # Images | # Building Footprint Labels |
+============+=====================+============+=============================+
| Rotterdam | 120 | 3401 | 48000 |
+------------+---------------------+------------+-----------------------------+
Imagery features:
.. list-table::
:widths: 10 10 10 10 10 10
:header-rows: 1
:stub-columns: 1
* -
- PAN
- RGBNIR
- PS-RGB
- PS-RGBNIR
- SAR-Intensity
* - GSD (m)
- 0.5
- 2.0
- 0.5
- 0.5
- 0.5
* - Chip size (px)
- 900 x 900
- 450 x 450
- 900 x 900
- 900 x 900
- 900 x 900
Dataset format:
* Imagery - GeoTIFFs from Worldview-2 (optical) and Capella Space (SAR)
* PAN.tif (Panchromatic)
* RGBNIR.tif (Multispectral)
* PS-RGB (Pansharpened RGB)
* PS-RGBNIR (Pansharpened RGBNIR)
* SAR-Intensity (SAR Intensity)
* Labels - GeoJSON
* labels.geojson
If you use this dataset in your research, please cite the following paper:
* https://arxiv.org/abs/2004.06500
.. versionadded:: 0.4
"""
file_regex = r'_tile_(\d+)\.'
dataset_id = 'SN6_buildings'
tarballs: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {11: ['SN6_buildings_AOI_11_Rotterdam_train.tar.gz']},
'test': {11: ['SN6_buildings_AOI_11_Rotterdam_test_public.tar.gz']},
}
md5s: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {11: ['10ca26d2287716e3b6ef0cf0ad9f946e']},
'test': {11: ['a07823a5e536feeb8bb6b6f0cb43cf05']},
}
valid_aois: ClassVar[dict[str, list[int]]] = {'train': [11], 'test': [11]}
valid_images: ClassVar[dict[str, list[str]]] = {
'train': ['PAN', 'PS-RGB', 'PS-RGBNIR', 'RGBNIR', 'SAR-Intensity'],
'test': ['SAR-Intensity'],
}
valid_masks = ('geojson_buildings',)