Source code for torchgeo.datasets.spacenet.spacenet5
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""SpaceNet 5 dataset."""
from typing import ClassVar
from .spacenet3 import SpaceNet3
[docs]class SpaceNet5(SpaceNet3):
r"""SpaceNet 5: Automated Road Network Extraction and Route Travel Time Estimation.
`SpaceNet 5 <https://spacenet.ai/sn5-challenge/>`_
is a dataset of road networks over the cities of Moscow, Mumbai and San
Juan (unavailable).
Collection features:
+------------+---------------------+------------+---------------------------+
| AOI | Area (km\ :sup:`2`\)| # Images | # Road Network Labels (km)|
+============+=====================+============+===========================+
| Moscow | 1353 | 1353 | 3066 |
+------------+---------------------+------------+---------------------------+
| Mumbai | 1021 | 1016 | 1951 |
+------------+---------------------+------------+---------------------------+
Imagery features:
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
:stub-columns: 1
* -
- PAN
- MS
- PS-MS
- PS-RGB
* - GSD (m)
- 0.31
- 1.24
- 0.30
- 0.30
* - Chip size (px)
- 1300 x 1300
- 325 x 325
- 1300 x 1300
- 1300 x 1300
Dataset format:
* Imagery - Worldview-3 GeoTIFFs
* PAN.tif (Panchromatic)
* MS.tif (Multispectral)
* PS-MS (Pansharpened Multispectral)
* PS-RGB (Pansharpened RGB)
* Labels - GeoJSON
* labels.geojson
If you use this dataset in your research, please use the following citation:
* The SpaceNet Partners, “SpaceNet5: Automated Road Network Extraction and
Route Travel Time Estimation from Satellite Imagery”,
https://spacenet.ai/sn5-challenge/
.. versionadded:: 0.2
"""
file_regex = r'_chip(\d+)\.'
dataset_id = 'SN5_roads'
tarballs: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
7: ['SN5_roads_train_AOI_7_Moscow.tar.gz'],
8: ['SN5_roads_train_AOI_8_Mumbai.tar.gz'],
},
'test': {9: ['SN5_roads_test_public_AOI_9_San_Juan.tar.gz']},
}
md5s: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
7: ['03082d01081a6d8df2bc5a9645148d2a'],
8: ['1ee20ba781da6cb7696eef9a95a5bdcc'],
},
'test': {9: ['fc45afef219dfd3a20f2d4fc597f6882']},
}
valid_aois: ClassVar[dict[str, list[int]]] = {'train': [7, 8], 'test': [9]}
valid_images: ClassVar[dict[str, list[str]]] = {
'train': ['MS', 'PAN', 'PS-MS', 'PS-RGB'],
'test': ['MS', 'PAN', 'PS-MS', 'PS-RGB'],
}
valid_masks = ('geojson_roads_speed',)