Shortcuts

Source code for torchgeo.datasets.spacenet.spacenet5

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""SpaceNet 5 dataset."""

from typing import ClassVar

from .spacenet3 import SpaceNet3


[docs]class SpaceNet5(SpaceNet3): r"""SpaceNet 5: Automated Road Network Extraction and Route Travel Time Estimation. `SpaceNet 5 <https://spacenet.ai/sn5-challenge/>`_ is a dataset of road networks over the cities of Moscow, Mumbai and San Juan (unavailable). Collection features: +------------+---------------------+------------+---------------------------+ | AOI | Area (km\ :sup:`2`\)| # Images | # Road Network Labels (km)| +============+=====================+============+===========================+ | Moscow | 1353 | 1353 | 3066 | +------------+---------------------+------------+---------------------------+ | Mumbai | 1021 | 1016 | 1951 | +------------+---------------------+------------+---------------------------+ Imagery features: .. list-table:: :widths: 10 10 10 10 10 :header-rows: 1 :stub-columns: 1 * - - PAN - MS - PS-MS - PS-RGB * - GSD (m) - 0.31 - 1.24 - 0.30 - 0.30 * - Chip size (px) - 1300 x 1300 - 325 x 325 - 1300 x 1300 - 1300 x 1300 Dataset format: * Imagery - Worldview-3 GeoTIFFs * PAN.tif (Panchromatic) * MS.tif (Multispectral) * PS-MS (Pansharpened Multispectral) * PS-RGB (Pansharpened RGB) * Labels - GeoJSON * labels.geojson If you use this dataset in your research, please use the following citation: * The SpaceNet Partners, “SpaceNet5: Automated Road Network Extraction and Route Travel Time Estimation from Satellite Imagery”, https://spacenet.ai/sn5-challenge/ .. versionadded:: 0.2 """ file_regex = r'_chip(\d+)\.' dataset_id = 'SN5_roads' tarballs: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': { 7: ['SN5_roads_train_AOI_7_Moscow.tar.gz'], 8: ['SN5_roads_train_AOI_8_Mumbai.tar.gz'], }, 'test': {9: ['SN5_roads_test_public_AOI_9_San_Juan.tar.gz']}, } md5s: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': { 7: ['03082d01081a6d8df2bc5a9645148d2a'], 8: ['1ee20ba781da6cb7696eef9a95a5bdcc'], }, 'test': {9: ['fc45afef219dfd3a20f2d4fc597f6882']}, } valid_aois: ClassVar[dict[str, list[int]]] = {'train': [7, 8], 'test': [9]} valid_images: ClassVar[dict[str, list[str]]] = { 'train': ['MS', 'PAN', 'PS-MS', 'PS-RGB'], 'test': ['MS', 'PAN', 'PS-MS', 'PS-RGB'], } valid_masks = ('geojson_roads_speed',)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources