Source code for torchgeo.datasets.spacenet.spacenet3
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""SpaceNet 3 dataset."""
from typing import ClassVar
from .base import SpaceNet
[docs]class SpaceNet3(SpaceNet):
r"""SpaceNet 3: Road Network Detection.
`SpaceNet 3 <https://spacenet.ai/spacenet-roads-dataset/>`_
is a dataset of road networks over the cities of Las Vegas, Paris, Shanghai,
and Khartoum.
Collection features:
+------------+---------------------+------------+---------------------------+
| AOI | Area (km\ :sup:`2`\)| # Images | # Road Network Labels (km)|
+============+=====================+============+===========================+
| Vegas | 216 | 854 | 3685 |
+------------+---------------------+------------+---------------------------+
| Paris | 1030 | 257 | 425 |
+------------+---------------------+------------+---------------------------+
| Shanghai | 1000 | 1028 | 3537 |
+------------+---------------------+------------+---------------------------+
| Khartoum | 765 | 283 | 1030 |
+------------+---------------------+------------+---------------------------+
Imagery features:
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
:stub-columns: 1
* -
- PAN
- MS
- PS-MS
- PS-RGB
* - GSD (m)
- 0.31
- 1.24
- 0.30
- 0.30
* - Chip size (px)
- 1300 x 1300
- 325 x 325
- 1300 x 1300
- 1300 x 1300
Dataset format:
* Imagery - Worldview-3 GeoTIFFs
* PAN.tif (Panchromatic)
* MS.tif (Multispectral)
* PS-MS (Pansharpened Multispectral)
* PS-RGB (Pansharpened RGB)
* Labels - GeoJSON
* labels.geojson
If you use this dataset in your research, please cite the following paper:
* https://arxiv.org/abs/1807.01232
.. versionadded:: 0.3
"""
dataset_id = 'SN3_roads'
tarballs: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
2: [
'SN3_roads_train_AOI_2_Vegas.tar.gz',
'SN3_roads_train_AOI_2_Vegas_geojson_roads_speed.tar.gz',
],
3: [
'SN3_roads_train_AOI_3_Paris.tar.gz',
'SN3_roads_train_AOI_3_Paris_geojson_roads_speed.tar.gz',
],
4: [
'SN3_roads_train_AOI_4_Shanghai.tar.gz',
'SN3_roads_train_AOI_4_Shanghai_geojson_roads_speed.tar.gz',
],
5: [
'SN3_roads_train_AOI_5_Khartoum.tar.gz',
'SN3_roads_train_AOI_5_Khartoum_geojson_roads_speed.tar.gz',
],
},
'test': {
2: ['SN3_roads_test_public_AOI_2_Vegas.tar.gz'],
3: ['SN3_roads_test_public_AOI_3_Paris.tar.gz'],
4: ['SN3_roads_test_public_AOI_4_Shanghai.tar.gz'],
5: ['SN3_roads_test_public_AOI_5_Khartoum.tar.gz'],
},
}
md5s: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
2: ['06317255b5e0c6df2643efd8a50f22ae', '4acf7846ed8121db1319345cfe9fdca9'],
3: ['c13baf88ee10fe47870c303223cabf82', 'abc8199d4c522d3a14328f4f514702ad'],
4: ['ef3de027c3da734411d4333bee9c273b', 'f1db36bd17b2be2281f5f7d369e9e25d'],
5: ['46f327b550076f87babb5f7b43f27c68', 'd969693760d59401a84bd9215375a636'],
},
'test': {
2: ['e9eb2220888ba38cab175fc6db6799a2'],
3: ['21098cfe471dba6208c92b37b8203ae9'],
4: ['2e7438b870ffd33d4453366db1c5b317'],
5: ['f367c79fa0fc1d38e63a0fdd065ed957'],
},
}
valid_aois: ClassVar[dict[str, list[int]]] = {
'train': [2, 3, 4, 5],
'test': [2, 3, 4, 5],
}
valid_images: ClassVar[dict[str, list[str]]] = {
'train': ['MS', 'PS-MS', 'PAN', 'PS-RGB'],
'test': ['MUL', 'MUL-PanSharpen', 'PAN', 'RGB-PanSharpen'],
}
valid_masks: tuple[str, ...] = ('geojson_roads', 'geojson_roads_speed')