Shortcuts

Source code for torchgeo.datasets.spacenet.spacenet3

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""SpaceNet 3 dataset."""

from typing import ClassVar

from .base import SpaceNet


[docs]class SpaceNet3(SpaceNet): r"""SpaceNet 3: Road Network Detection. `SpaceNet 3 <https://spacenet.ai/spacenet-roads-dataset/>`_ is a dataset of road networks over the cities of Las Vegas, Paris, Shanghai, and Khartoum. Collection features: +------------+---------------------+------------+---------------------------+ | AOI | Area (km\ :sup:`2`\)| # Images | # Road Network Labels (km)| +============+=====================+============+===========================+ | Vegas | 216 | 854 | 3685 | +------------+---------------------+------------+---------------------------+ | Paris | 1030 | 257 | 425 | +------------+---------------------+------------+---------------------------+ | Shanghai | 1000 | 1028 | 3537 | +------------+---------------------+------------+---------------------------+ | Khartoum | 765 | 283 | 1030 | +------------+---------------------+------------+---------------------------+ Imagery features: .. list-table:: :widths: 10 10 10 10 10 :header-rows: 1 :stub-columns: 1 * - - PAN - MS - PS-MS - PS-RGB * - GSD (m) - 0.31 - 1.24 - 0.30 - 0.30 * - Chip size (px) - 1300 x 1300 - 325 x 325 - 1300 x 1300 - 1300 x 1300 Dataset format: * Imagery - Worldview-3 GeoTIFFs * PAN.tif (Panchromatic) * MS.tif (Multispectral) * PS-MS (Pansharpened Multispectral) * PS-RGB (Pansharpened RGB) * Labels - GeoJSON * labels.geojson If you use this dataset in your research, please cite the following paper: * https://arxiv.org/abs/1807.01232 .. versionadded:: 0.3 """ dataset_id = 'SN3_roads' tarballs: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': { 2: [ 'SN3_roads_train_AOI_2_Vegas.tar.gz', 'SN3_roads_train_AOI_2_Vegas_geojson_roads_speed.tar.gz', ], 3: [ 'SN3_roads_train_AOI_3_Paris.tar.gz', 'SN3_roads_train_AOI_3_Paris_geojson_roads_speed.tar.gz', ], 4: [ 'SN3_roads_train_AOI_4_Shanghai.tar.gz', 'SN3_roads_train_AOI_4_Shanghai_geojson_roads_speed.tar.gz', ], 5: [ 'SN3_roads_train_AOI_5_Khartoum.tar.gz', 'SN3_roads_train_AOI_5_Khartoum_geojson_roads_speed.tar.gz', ], }, 'test': { 2: ['SN3_roads_test_public_AOI_2_Vegas.tar.gz'], 3: ['SN3_roads_test_public_AOI_3_Paris.tar.gz'], 4: ['SN3_roads_test_public_AOI_4_Shanghai.tar.gz'], 5: ['SN3_roads_test_public_AOI_5_Khartoum.tar.gz'], }, } md5s: ClassVar[dict[str, dict[int, list[str]]]] = { 'train': { 2: ['06317255b5e0c6df2643efd8a50f22ae', '4acf7846ed8121db1319345cfe9fdca9'], 3: ['c13baf88ee10fe47870c303223cabf82', 'abc8199d4c522d3a14328f4f514702ad'], 4: ['ef3de027c3da734411d4333bee9c273b', 'f1db36bd17b2be2281f5f7d369e9e25d'], 5: ['46f327b550076f87babb5f7b43f27c68', 'd969693760d59401a84bd9215375a636'], }, 'test': { 2: ['e9eb2220888ba38cab175fc6db6799a2'], 3: ['21098cfe471dba6208c92b37b8203ae9'], 4: ['2e7438b870ffd33d4453366db1c5b317'], 5: ['f367c79fa0fc1d38e63a0fdd065ed957'], }, } valid_aois: ClassVar[dict[str, list[int]]] = { 'train': [2, 3, 4, 5], 'test': [2, 3, 4, 5], } valid_images: ClassVar[dict[str, list[str]]] = { 'train': ['MS', 'PS-MS', 'PAN', 'PS-RGB'], 'test': ['MUL', 'MUL-PanSharpen', 'PAN', 'RGB-PanSharpen'], } valid_masks: tuple[str, ...] = ('geojson_roads', 'geojson_roads_speed')

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources