Source code for torchgeo.datasets.spacenet.spacenet1
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""SpaceNet 1 dataset."""
from typing import ClassVar
from .base import SpaceNet
[docs]class SpaceNet1(SpaceNet):
"""SpaceNet 1: Building Detection v1 Dataset.
`SpaceNet 1 <https://spacenet.ai/spacenet-buildings-dataset-v1/>`_
is a dataset of building footprints over the city of Rio de Janeiro.
Dataset features:
* No. of images: 6940 (8 Band) + 6940 (RGB)
* No. of polygons: 382,534 building labels
* Area Coverage: 2544 sq km
* GSD: 1 m (8 band), 50 cm (rgb)
* Chip size: 102 x 110 (8 band), 406 x 439 (rgb)
Dataset format:
* Imagery - Worldview-2 GeoTIFFs
* 8Band.tif (Multispectral)
* RGB.tif (Pansharpened RGB)
* Labels - GeoJSON
* labels.geojson
If you use this dataset in your research, please cite the following paper:
* https://arxiv.org/abs/1807.01232
"""
directory_glob = '{product}'
dataset_id = 'SN1_buildings'
tarballs: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
1: [
'SN1_buildings_train_AOI_1_Rio_3band.tar.gz',
'SN1_buildings_train_AOI_1_Rio_8band.tar.gz',
'SN1_buildings_train_AOI_1_Rio_geojson_buildings.tar.gz',
]
},
'test': {
1: [
'SN1_buildings_test_AOI_1_Rio_3band.tar.gz',
'SN1_buildings_test_AOI_1_Rio_8band.tar.gz',
]
},
}
md5s: ClassVar[dict[str, dict[int, list[str]]]] = {
'train': {
1: [
'279e334a2120ecac70439ea246174516',
'6440a9eedbd7c4fe9741875135362c8c',
'b6e02fbd727f252ea038abe4f77a77b3',
]
},
'test': {
1: ['18283d78b21c239bc1831f3bf1d2c996', '732b3a40603b76e80aac84e002e2b3e8']
},
}
valid_aois: ClassVar[dict[str, list[int]]] = {'train': [1], 'test': [1]}
valid_images: ClassVar[dict[str, list[str]]] = {
'train': ['3band', '8band'],
'test': ['3band', '8band'],
}
valid_masks = ('geojson',)
chip_size: ClassVar[dict[str, tuple[int, int]]] = {
'3band': (406, 439),
'8band': (102, 110),
}