Shortcuts

Source code for torchgeo.datasets.spacenet.base

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""SpaceNet abstract base class."""

import glob
import os
import re
from abc import ABC, abstractmethod
from collections.abc import Callable
from typing import Any, ClassVar

import fiona
import matplotlib.pyplot as plt
import numpy as np
import rasterio as rio
import torch
from fiona.errors import FionaError, FionaValueError
from fiona.transform import transform_geom
from matplotlib.figure import Figure
from pyproj import CRS
from rasterio.enums import Resampling
from rasterio.features import rasterize
from rasterio.transform import Affine
from torch import Tensor

from ..errors import DatasetNotFoundError
from ..geo import NonGeoDataset
from ..utils import (
    Path,
    check_integrity,
    extract_archive,
    percentile_normalization,
    which,
)


[docs]class SpaceNet(NonGeoDataset, ABC): """Abstract base class for the SpaceNet datasets. The `SpaceNet <https://spacenet.ai/datasets/>`__ datasets are a set of datasets that all together contain >11M building footprints and ~20,000 km of road labels mapped over high-resolution satellite imagery obtained from a variety of sensors such as Worldview-2, Worldview-3 and Dove. .. note:: The SpaceNet datasets require the following additional library to be installed: * `AWS CLI <https://aws.amazon.com/cli/>`_: to download the dataset from AWS. """ url = 's3://spacenet-dataset/spacenet/{dataset_id}/tarballs/{tarball}' directory_glob = os.path.join('**', 'AOI_{aoi}_*', '{product}') image_glob = '*.tif' mask_glob = '*.geojson' file_regex = r'_img(\d+)\.' chip_size: ClassVar[dict[str, tuple[int, int]]] = {} cities: ClassVar[dict[int, str]] = { 1: 'Rio', 2: 'Vegas', 3: 'Paris', 4: 'Shanghai', 5: 'Khartoum', 6: 'Atlanta', 7: 'Moscow', 8: 'Mumbai', 9: 'San Juan', 10: 'Dar Es Salaam', 11: 'Rotterdam', } @property @abstractmethod def dataset_id(self) -> str: """Dataset ID.""" @property @abstractmethod def tarballs(self) -> dict[str, dict[int, list[str]]]: """Mapping of tarballs[split][aoi] = [tarballs].""" @property @abstractmethod def md5s(self) -> dict[str, dict[int, list[str]]]: """Mapping of md5s[split][aoi] = [md5s].""" @property @abstractmethod def valid_aois(self) -> dict[str, list[int]]: """Mapping of valid_aois[split] = [aois].""" @property @abstractmethod def valid_images(self) -> dict[str, list[str]]: """Mapping of valid_images[split] = [images].""" @property @abstractmethod def valid_masks(self) -> tuple[str, ...]: """List of valid masks."""
[docs] def __init__( self, root: Path = 'data', split: str = 'train', aois: list[int] = [], image: str | None = None, mask: str | None = None, transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, download: bool = False, checksum: bool = False, ) -> None: """Initialize a new SpaceNet Dataset instance. Args: root: root directory where dataset can be found split: 'train' or 'test' split aois: areas of interest image: image selection mask: mask selection transforms: a function/transform that takes input sample and its target as entry and returns a transformed version. download: if True, download dataset and store it in the root directory. checksum: if True, check the MD5 of the downloaded files (may be slow) Raises: AssertionError: If any invalid arguments are passed. DatasetNotFoundError: If dataset is not found and *download* is False. """ self.root = root self.split = split self.aois = aois or self.valid_aois[split] self.image = image or self.valid_images[split][0] self.mask = mask or self.valid_masks[0] self.transforms = transforms self.download = download self.checksum = checksum assert self.split in {'train', 'test'} assert set(self.aois) <= set(self.valid_aois[split]) assert self.image in self.valid_images[split] assert self.mask in self.valid_masks self._verify() if self.split == 'train': assert len(self.images) == len(self.masks)
[docs] def __len__(self) -> int: """Return the number of samples in the dataset. Returns: length of the dataset """ return len(self.images)
def _load_image(self, path: Path) -> tuple[Tensor, Affine, CRS]: """Load a single image. Args: path: path to the image Returns: the image """ with rio.open(path) as img: out_shape = (img.count, img.height, img.width) if self.image in self.chip_size: out_shape = (img.count, *self.chip_size[self.image]) array = img.read(out_shape=out_shape, resampling=Resampling.bilinear) tensor = torch.from_numpy(array.astype(np.float32)) return tensor, img.transform, img.crs def _load_mask( self, path: Path, tfm: Affine, raster_crs: CRS, shape: tuple[int, int] ) -> Tensor: """Rasterizes the dataset's labels (in geojson format). Args: path: path to the label tfm: transform of corresponding image raster_crs: CRS of raster file shape: shape of corresponding image Returns: Tensor: label tensor """ try: with fiona.open(path) as src: vector_crs = CRS(src.crs) labels = [ transform_geom( vector_crs.to_string(), raster_crs.to_string(), feature['geometry'], ) for feature in src if feature['geometry'] ] except (FionaError, FionaValueError): # Empty geojson files, geometries that cannot be transformed (SN7) labels = [] if labels: mask = rasterize( labels, out_shape=shape, fill=0, # nodata value transform=tfm, all_touched=False, dtype=np.int64, ) else: mask = np.zeros(shape=shape, dtype=np.int64) return torch.from_numpy(mask)
[docs] def __getitem__(self, index: int) -> dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: data and label at that index """ image_path = self.images[index] img, tfm, raster_crs = self._load_image(image_path) h, w = img.shape[1:] sample = {'image': img} if self.split == 'train': mask_path = self.masks[index] mask = self._load_mask(mask_path, tfm, raster_crs, (h, w)) sample['mask'] = mask if self.transforms is not None: sample = self.transforms(sample) return sample
def _image_id(self, path: str) -> list[Any]: """Return the image ID. Args: path: An image or mask filepath. Returns: A list of integers. """ keys: list[Any] = [] if match := re.search(self.file_regex, path): for key in match.group(1).split('_'): try: keys.append(int(key)) except ValueError: keys.append(key) return keys def _list_files(self, aoi: int) -> tuple[list[str], list[str]]: """List all files in a particular AOI. Args: aoi: Area of interest. Returns: Lists of image and mask files. """ # Produce a list of files kwargs = {} if '{aoi}' in self.directory_glob: kwargs['aoi'] = aoi product_glob = os.path.join( self.root, self.dataset_id, self.split, self.directory_glob ) image_glob = product_glob.format(product=self.image, **kwargs) mask_glob = product_glob.format(product=self.mask, **kwargs) images = glob.glob(os.path.join(image_glob, self.image_glob), recursive=True) masks = glob.glob(os.path.join(mask_glob, self.mask_glob), recursive=True) # Sort files based on image ID images.sort(key=self._image_id) masks.sort(key=self._image_id) # Remove images missing masks (SN3) or duplicate images (SN8) if self.split == 'train': images_iter = iter(images) images = [] for mask in masks: mask_id = self._image_id(mask) for image in images_iter: image_id = self._image_id(image) if image_id == mask_id: images.append(image) break return images, masks def _verify(self) -> None: """Verify the integrity of the dataset.""" self.images = [] self.masks = [] root = os.path.join(self.root, self.dataset_id, self.split) os.makedirs(root, exist_ok=True) for aoi in self.aois: # Check if the extracted files already exist images, masks = self._list_files(aoi) if images: self.images.extend(images) self.masks.extend(masks) continue # Check if the tarball has already been downloaded for tarball, md5 in zip( self.tarballs[self.split][aoi], self.md5s[self.split][aoi] ): if os.path.exists(os.path.join(root, tarball)): extract_archive(os.path.join(root, tarball), root) continue # Check if the user requested to download the dataset if not self.download: raise DatasetNotFoundError(self) # Download the dataset url = self.url.format(dataset_id=self.dataset_id, tarball=tarball) aws = which('aws') aws('s3', 'cp', url, root) check_integrity( os.path.join(root, tarball), md5 if self.checksum else None ) extract_archive(os.path.join(root, tarball), root) images, masks = self._list_files(aoi) self.images.extend(images) self.masks.extend(masks)
[docs] def plot( self, sample: dict[str, Tensor], show_titles: bool = True, suptitle: str | None = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample .. versionadded:: 0.2 """ image = np.rollaxis(sample['image'][:3].numpy(), 0, 3) image = percentile_normalization(image, axis=(0, 1)) ncols = 1 show_mask = 'mask' in sample show_predictions = 'prediction' in sample if show_mask: mask = sample['mask'].numpy() ncols += 1 if show_predictions: prediction = sample['prediction'].numpy() ncols += 1 fig, axs = plt.subplots(ncols=ncols, squeeze=False, figsize=(ncols * 8, 8)) axs[0, 0].imshow(image) axs[0, 0].axis('off') if show_titles: axs[0, 0].set_title('Image') if show_mask: axs[0, 1].imshow(mask, interpolation='none') axs[0, 1].axis('off') if show_titles: axs[0, 1].set_title('Label') if show_predictions: axs[0, 2].imshow(prediction, interpolation='none') axs[0, 2].axis('off') if show_titles: axs[0, 2].set_title('Prediction') if suptitle is not None: plt.suptitle(suptitle) return fig

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources