Shortcuts

Source code for torchgeo.datasets.nlcd

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""NLCD dataset."""

import os
from collections.abc import Callable, Iterable
from typing import Any, ClassVar

import matplotlib.pyplot as plt
import torch
from matplotlib.figure import Figure
from pyproj import CRS

from .errors import DatasetNotFoundError
from .geo import RasterDataset
from .utils import GeoSlice, Path, download_url


[docs]class NLCD(RasterDataset): """Annual National Land Cover Database (NLCD) dataset. The `Annual NLCD products <https://www.usgs.gov/centers/eros/science/annual-national-land-cover-database>`_ is an annual land cover product for the conterminous U.S. initially covering the period from 1985 to 2023. The product is a joint effort between the United States Geological Survey (`USGS <https://www.usgs.gov/>`_) and the Multi-Resolution Land Characteristics Consortium (`MRLC <https://www.mrlc.gov/>`_). The dataset contains the following 17 classes: 0. Background #. Open Water #. Perennial Ice/Snow #. Developed, Open Space #. Developed, Low Intensity #. Developed, Medium Intensity #. Developed, High Intensity #. Barren Land (Rock/Sand/Clay) #. Deciduous Forest #. Evergreen Forest #. Mixed Forest #. Shrub/Scrub #. Grassland/Herbaceous #. Pasture/Hay #. Cultivated Crops #. Woody Wetlands #. Emergent Herbaceous Wetlands Detailed descriptions of the classes can be found `here <https://www.mrlc.gov/data/legends/national-land-cover-database-class-legend-and-description>`__. Dataset format: * single channel .img file with integer class labels If you use this dataset in your research, please cite the following paper: * https://doi.org/10.5066/P94UXNTS .. versionadded:: 0.5 """ filename_glob = 'Annual_NLCD_LndCov_*_CU_C1V0.tif' filename_regex = r'Annual_NLCD_LndCov_(?P<date>\d{4})_CU_C1V0\.tif' date_format = '%Y' is_image = False url = 'https://s3-us-west-2.amazonaws.com/mrlc/Annual_NLCD_LndCov_{}_CU_C1V0.tif' md5s: ClassVar[dict[int, str]] = { 1985: 'a2e1c5f0b34e9b15a63a9dc10e8d3ec2', 1986: 'da1d08ca51ac43abc14711c8d6139f1d', 1987: '2cb85e8f077c227605cd7bac62a72a75', 1988: 'b20fb987cc30926d2d125d045e02626d', 1989: 'dbe851cbea34d0a57c2a94eb745a1267', 1990: '1927e0e040b9ff513ff039749b64919b', 1991: 'eca73474843d6c58693eba62d70e507c', 1992: '8beda41ba79000f55a8e9358ba3fa5a4', 1993: '1a023552967cdac1111e9968ea62c879', 1994: 'acc30ce4f6cdd78af5f7887d17ac4de3', 1995: 'f728e8fc231b2e8e74a14201f500543a', 1996: 'd2580904244f89b20d6258150fbf4161', 1997: 'fec4e08032e162f2cc7dbe019d042609', 1998: '87ea19434de96ea99cd5d7991042816c', 1999: 'd4133737f20e75f3bd3a5baa32a668da', 2000: 'e20b61bb2e7f4034a33c9fd536798a01', 2001: 'b1f46ace9aedd17a89efab489cb67bc3', 2002: '57bf60d7cd473096af3bb125391bde63', 2003: '5e346854da9abf739152e85fee4c7aff', 2004: '13136f271f53a454358eb7ec12bda686', 2005: 'f00b66b57a23eb49a077e88704964a91', 2006: '074ba90de5e62a37a5f001b7572f6baa', 2007: 'cdef29a191cf165baaae80857ce5a980', 2008: 'da907c76a1f12739333148504fd111c9', 2009: '47890b306b875e681990b3db0c709da3', 2010: '9a81f405f9e2f45d581078afd53c2d4b', 2011: '13f4ef40b204aa1108dc0599d9546701', 2012: '66b33146f9a9d9491be10c59c51e3e33', 2013: 'f8d230f7dea493c47fbc74984ff856cc', 2014: '68eb07ce86c1f7c2546ec43c2f9f7029', 2015: 'f5a1b59fe54a70752f544c06cb965be4', 2016: 'f0c2e74824fc281a57821e28e2c7fe6e', 2017: 'a0aa8be0ed7d637f0f88f26d3742b20e', 2018: 'a01f31547837ff1dfec1aba07b89bbec', 2019: 'fa738201cddc1393dac4383b6ce2561a', 2020: 'aa8f51690c7b01f3b3b413be9a7c36d6', 2021: '47fc1794a64704a918b6ad586df4267c', 2022: '11359748229e138cde971947864104a4', 2023: '498ff8a512d32fe905720796fdb7fd52', } cmap: ClassVar[dict[int, tuple[int, int, int, int]]] = { 0: (0, 0, 0, 0), 11: (70, 107, 159, 255), 12: (209, 222, 248, 255), 21: (222, 197, 197, 255), 22: (217, 146, 130, 255), 23: (235, 0, 0, 255), 24: (171, 0, 0, 255), 31: (179, 172, 159, 255), 41: (104, 171, 95, 255), 42: (28, 95, 44, 255), 43: (181, 197, 143, 255), 52: (204, 184, 121, 255), 71: (223, 223, 194, 255), 81: (220, 217, 57, 255), 82: (171, 108, 40, 255), 90: (184, 217, 235, 255), 95: (108, 159, 184, 255), }
[docs] def __init__( self, paths: Path | Iterable[Path] = 'data', crs: CRS | None = None, res: float | tuple[float, float] | None = None, years: list[int] = [2023], classes: list[int] = list(cmap.keys()), transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, cache: bool = True, download: bool = False, checksum: bool = False, ) -> None: """Initialize a new Dataset instance. Args: paths: one or more root directories to search or files to load crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS in (xres, yres) format. If a single float is provided, it is used for both the x and y resolution. (defaults to the resolution of the first file found) years: list of years for which to use nlcd layer classes: list of classes to include, the rest will be mapped to 0 (defaults to all classes) transforms: a function/transform that takes an input sample and returns a transformed version cache: if True, cache file handle to speed up repeated sampling download: if True, download dataset and store it in the root directory checksum: if True, check the MD5 after downloading files (may be slow) Raises: AssertionError: if ``years`` or ``classes`` are invalid DatasetNotFoundError: If dataset is not found and *download* is False. """ assert set(years) <= self.md5s.keys(), ( 'NLCD data product only exists for the following years: ' f'{list(self.md5s.keys())}.' ) assert set(classes) <= self.cmap.keys(), ( f'Only the following classes are valid: {list(self.cmap.keys())}.' ) assert 0 in classes, 'Classes must include the background class: 0' self.paths = paths self.years = years self.classes = classes self.download = download self.checksum = checksum self.ordinal_map = torch.zeros(max(self.cmap.keys()) + 1, dtype=self.dtype) self.ordinal_cmap = torch.zeros((len(self.classes), 4), dtype=torch.uint8) self._verify() super().__init__(paths, crs, res, transforms=transforms, cache=cache) # Map chosen classes to ordinal numbers, all others mapped to background class for v, k in enumerate(self.classes): self.ordinal_map[k] = v self.ordinal_cmap[v] = torch.tensor(self.cmap[k])
[docs] def __getitem__(self, query: GeoSlice) -> dict[str, Any]: """Retrieve input, target, and/or metadata indexed by spatiotemporal slice. Args: query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. Returns: Sample of input, target, and/or metadata at that index. Raises: IndexError: If *query* is not found in the index. """ sample = super().__getitem__(query) sample['mask'] = self.ordinal_map[sample['mask']] return sample
def _verify(self) -> None: """Verify the integrity of the dataset.""" # Check if the TIFF files for the specified years have already been downloaded exists = [] for year in self.years: filename_year = self.filename_glob.replace('*', str(year), 1) assert isinstance(self.paths, str | os.PathLike) pathname = os.path.join(self.paths, filename_year) if os.path.exists(pathname): exists.append(True) else: exists.append(False) if all(exists): return # Check if the user requested to download the dataset if not self.download: raise DatasetNotFoundError(self) # Download the dataset self._download() def _download(self) -> None: """Download the dataset.""" for year in self.years: download_url( self.url.format(year), self.paths, md5=self.md5s[year] if self.checksum else None, )
[docs] def plot( self, sample: dict[str, Any], show_titles: bool = True, suptitle: str | None = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`RasterDataset.__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample """ mask = sample['mask'].squeeze() ncols = 1 showing_predictions = 'prediction' in sample if showing_predictions: pred = sample['prediction'].squeeze() ncols = 2 fig, axs = plt.subplots( nrows=1, ncols=ncols, figsize=(ncols * 4, 4), squeeze=False ) axs[0, 0].imshow(self.ordinal_cmap[mask], interpolation='none') axs[0, 0].axis('off') if show_titles: axs[0, 0].set_title('Mask') if showing_predictions: axs[0, 1].imshow(self.ordinal_cmap[pred], interpolation='none') axs[0, 1].axis('off') if show_titles: axs[0, 1].set_title('Prediction') if suptitle is not None: plt.suptitle(suptitle) return fig

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources