Shortcuts

Source code for torchgeo.datasets.nasa_marine_debris

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""NASA Marine Debris dataset."""

import glob
import os
from collections.abc import Callable

import matplotlib.pyplot as plt
import numpy as np
import rasterio
import torch
from matplotlib.figure import Figure
from torch import Tensor
from torchvision.utils import draw_bounding_boxes

from .errors import DatasetNotFoundError
from .geo import NonGeoDataset
from .utils import Path, which


[docs]class NASAMarineDebris(NonGeoDataset): """NASA Marine Debris dataset. The `NASA Marine Debris <https://beta.source.coop/repositories/nasa/marine-debris/>`__ dataset is a dataset for detection of floating marine debris in satellite imagery. Dataset features: * 707 patches with 3 m per pixel resolution (256x256 px) * three spectral bands - RGB * 1 object class: marine_debris * images taken by Planet Labs PlanetScope satellites * imagery taken from 2016-2019 from coasts of Greece, Honduras, and Ghana Dataset format: * images are three-channel geotiffs in uint8 format * labels are numpy files (.npy) containing bounding box (xyxy) coordinates * additional: images in jpg format and labels in geojson format If you use this dataset in your research, please cite the following paper: * https://doi.org/10.34911/rdnt.9r6ekg .. note:: This dataset requires the following additional library to be installed: * `azcopy <https://github.com/Azure/azure-storage-azcopy>`_: to download the dataset from Source Cooperative. .. versionadded:: 0.2 """ url = 'https://radiantearth.blob.core.windows.net/mlhub/nasa-marine-debris'
[docs] def __init__( self, root: Path = 'data', transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, download: bool = False, ) -> None: """Initialize a new NASA Marine Debris Dataset instance. Args: root: root directory where dataset can be found transforms: a function/transform that takes input sample and its target as entry and returns a transformed version download: if True, download dataset and store it in the root directory Raises: DatasetNotFoundError: If dataset is not found and *download* is False. """ self.root = root self.transforms = transforms self.download = download self._verify() self.source = sorted(glob.glob(os.path.join(self.root, 'source', '*.tif'))) self.labels = sorted(glob.glob(os.path.join(self.root, 'labels', '*.npy')))
[docs] def __getitem__(self, index: int) -> dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: data and labels at that index """ with rasterio.open(self.source[index]) as source: image = torch.from_numpy(source.read()).float() labels = np.load(self.labels[index]) # Boxes contain unnecessary value of 1 after xyxy coords boxes = torch.from_numpy(labels[:, :4]) # Filter invalid boxes w_check = (boxes[:, 2] - boxes[:, 0]) > 0 h_check = (boxes[:, 3] - boxes[:, 1]) > 0 indices = w_check & h_check boxes = boxes[indices] sample = {'image': image, 'bbox_xyxy': boxes} if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.source)
def _verify(self) -> None: """Verify the integrity of the dataset.""" # Check if the directories already exist dirs = ['source', 'labels'] exists = [os.path.exists(os.path.join(self.root, d)) for d in dirs] if all(exists): return # Check if the user requested to download the dataset if not self.download: raise DatasetNotFoundError(self) # Download the dataset self._download() def _download(self) -> None: """Download the dataset.""" os.makedirs(self.root, exist_ok=True) azcopy = which('azcopy') azcopy('sync', self.url, self.root, '--recursive=true')
[docs] def plot( self, sample: dict[str, Tensor], show_titles: bool = True, suptitle: str | None = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample """ ncols = 1 sample['image'] = sample['image'].byte() image = sample['image'] if 'bbox_xyxy' in sample and len(sample['bbox_xyxy']): image = draw_bounding_boxes( image=sample['image'], boxes=sample['bbox_xyxy'] ) image_arr = image.permute((1, 2, 0)).numpy() if 'prediction_bbox_xyxy' in sample and len(sample['prediction_bbox_xyxy']): ncols += 1 preds = draw_bounding_boxes( image=sample['image'], boxes=sample['prediction_bbox_xyxy'] ) preds_arr = preds.permute((1, 2, 0)).numpy() fig, axs = plt.subplots(ncols=ncols, figsize=(ncols * 10, 10)) if ncols < 2: axs.imshow(image_arr) axs.axis('off') if show_titles: axs.set_title('Ground Truth') else: axs[0].imshow(image_arr) axs[0].axis('off') axs[1].imshow(preds_arr) axs[1].axis('off') if show_titles: axs[0].set_title('Ground Truth') axs[1].set_title('Predictions') if suptitle is not None: plt.suptitle(suptitle) return fig

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources