Shortcuts

Source code for torchgeo.datasets.geo

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""Base classes for all :mod:`torchgeo` datasets."""

import abc
import fnmatch
import functools
import glob
import os
import re
import warnings
from collections.abc import Callable, Iterable, Sequence
from datetime import datetime
from typing import Any, ClassVar, Literal

import fiona
import fiona.transform
import geopandas as gpd
import numpy as np
import pandas as pd
import rasterio
import rasterio.merge
import shapely
import torch
from geopandas import GeoDataFrame
from pyproj import CRS
from rasterio.enums import Resampling
from rasterio.io import DatasetReader
from rasterio.vrt import WarpedVRT
from torch import Tensor
from torch.utils.data import Dataset
from torchvision.datasets import ImageFolder
from torchvision.datasets.folder import default_loader as pil_loader

from .errors import DatasetNotFoundError
from .utils import (
    GeoSlice,
    Path,
    array_to_tensor,
    concat_samples,
    convert_poly_coords,
    disambiguate_timestamp,
    merge_samples,
    path_is_vsi,
)


[docs]class GeoDataset(Dataset[dict[str, Any]], abc.ABC): """Abstract base class for datasets containing geospatial information. Geospatial information includes things like: * coordinates (latitude, longitude) * :term:`coordinate reference system (CRS)` * resolution :class:`GeoDataset` is a special class of datasets. Unlike :class:`NonGeoDataset`, the presence of geospatial information allows two or more datasets to be combined based on latitude/longitude. This allows users to do things like: * Combine image and target labels and sample from both simultaneously (e.g., Landsat and CDL) * Combine datasets for multiple image sources for multimodal learning or data fusion (e.g., Landsat and Sentinel) * Combine image and other raster data (e.g., elevation, temperature, pressure) and sample from both simultaneously (e.g., Landsat and Aster Global DEM) These combinations require that all queries are present in *both* datasets, and can be combined using an :class:`IntersectionDataset`: .. code-block:: python dataset = landsat & cdl Users may also want to: * Combine datasets for multiple image sources and treat them as equivalent (e.g., Landsat 7 and Landsat 8) * Combine datasets for disparate geospatial locations (e.g., Chesapeake NY and PA) These combinations require that all queries are present in *at least one* dataset, and can be combined using a :class:`UnionDataset`: .. code-block:: python dataset = landsat7 | landsat8 """ index: GeoDataFrame paths: Path | Iterable[Path] _res = (0.0, 0.0) #: Glob expression used to search for files. #: #: This expression should be specific enough that it will not pick up files from #: other datasets. It should not include a file extension, as the dataset may be in #: a different file format than what it was originally downloaded as. filename_glob = '*' # NOTE: according to the Python docs: # # * https://docs.python.org/3/library/exceptions.html#NotImplementedError # # the correct way to handle __add__ not being supported is to set it to None, # not to return NotImplemented or raise NotImplementedError. The downside of # this is that we have no way to explain to a user why they get an error and # what they should do instead (use __and__ or __or__). #: :class:`GeoDataset` addition can be ambiguous and is no longer supported. #: Users should instead use the intersection or union operator. __add__ = None # type: ignore[assignment] def _disambiguate_slice(self, query: GeoSlice) -> tuple[slice, slice, slice]: """Disambiguate a partial spatiotemporal slice. Args: query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. Returns: A fully resolved spatiotemporal slice. """ out = list(self.bounds) if isinstance(query, slice): query = (query,) # For each slice (x, y, t)... for i in range(len(query)): # For each component (start, stop, step)... if query[i].start is not None: out[i] = slice(query[i].start, out[i].stop, out[i].step) if query[i].stop is not None: out[i] = slice(out[i].start, query[i].stop, out[i].step) if query[i].step is not None: out[i] = slice(out[i].start, out[i].stop, query[i].step) geoslice = tuple(out) assert len(geoslice) == 3 return geoslice
[docs] @abc.abstractmethod def __getitem__(self, query: GeoSlice) -> dict[str, Any]: """Retrieve input, target, and/or metadata indexed by spatiotemporal slice. Args: query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. Returns: Sample of input, target, and/or metadata at that index. Raises: IndexError: If *query* is not found in the index. """
[docs] def __and__(self, other: 'GeoDataset') -> 'IntersectionDataset': """Take the intersection of two :class:`GeoDataset`. Args: other: another dataset Returns: a single dataset Raises: ValueError: if other is not a :class:`GeoDataset` .. versionadded:: 0.2 """ return IntersectionDataset(self, other)
[docs] def __or__(self, other: 'GeoDataset') -> 'UnionDataset': """Take the union of two GeoDatasets. Args: other: another dataset Returns: a single dataset Raises: ValueError: if other is not a :class:`GeoDataset` .. versionadded:: 0.2 """ return UnionDataset(self, other)
[docs] def __len__(self) -> int: """Return the number of files in the dataset. Returns: length of the dataset """ return len(self.index)
[docs] def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: GeoDataset bbox: {self.bounds} size: {len(self)}"""
@property def bounds(self) -> tuple[slice, slice, slice]: """Bounds of the index. Returns: Bounding x, y, and t slices. """ xmin, ymin, xmax, ymax = self.index.total_bounds xres, yres = self.res tmin = self.index.index.left.min() tmax = self.index.index.right.max() tres = 1 return slice(xmin, xmax, xres), slice(ymin, ymax, yres), slice(tmin, tmax, tres) @property def crs(self) -> CRS: """:term:`coordinate reference system (CRS)` of the dataset. Returns: The :term:`coordinate reference system (CRS)`. """ _crs: CRS = self.index.crs return _crs @crs.setter def crs(self, new_crs: CRS) -> None: """Change the :term:`coordinate reference system (CRS)` of a GeoDataset. If ``new_crs == self.crs``, does nothing, otherwise updates the index. Args: new_crs: New :term:`coordinate reference system (CRS)`. """ if new_crs == self.crs: return print(f'Converting {self.__class__.__name__} CRS from {self.crs} to {new_crs}') self.index.to_crs(new_crs, inplace=True) @property def res(self) -> tuple[float, float]: """Resolution of the dataset in units of CRS. Returns: The resolution of the dataset. """ return self._res @res.setter def res(self, new_res: float | tuple[float, float]) -> None: """Change the resolution of a GeoDataset. Args: new_res: New resolution in (xres, yres) format. If a single float is provided, it is used for both the x and y resolution. """ if isinstance(new_res, int | float): new_res = (new_res, new_res) if new_res == self.res: return print(f'Converting {self.__class__.__name__} res from {self.res} to {new_res}') self._res = new_res @property def files(self) -> list[str]: """A list of all files in the dataset. Returns: All files in the dataset. .. versionadded:: 0.5 """ # Make iterable if isinstance(self.paths, str | os.PathLike): paths: Iterable[Path] = [self.paths] else: paths = self.paths # Using set to remove any duplicates if directories are overlapping files: set[str] = set() for path in paths: if os.path.isdir(path): pathname = os.path.join(path, '**', self.filename_glob) files |= set(glob.iglob(pathname, recursive=True)) elif (os.path.isfile(path) or path_is_vsi(path)) and fnmatch.fnmatch( str(path), f'*{self.filename_glob}' ): files.add(str(path)) elif not hasattr(self, 'download'): warnings.warn( f"Could not find any relevant files for provided path '{path}'. " f'Path was ignored.', UserWarning, ) # Sort the output to enforce deterministic behavior. return sorted(files)
[docs]class RasterDataset(GeoDataset): """Abstract base class for :class:`GeoDataset` stored as raster files.""" #: Regular expression used to extract date from filename. #: #: The expression should use named groups. The expression may contain any number of #: groups. The following groups are specifically searched for by the base class: #: #: * ``date``: used to calculate ``mint`` and ``maxt`` for ``index`` insertion #: * ``start``: used to calculate ``mint`` for ``index`` insertion #: * ``stop``: used to calculate ``maxt`` for ``index`` insertion #: #: When :attr:`~RasterDataset.separate_files` is True, the following additional #: groups are searched for to find other files: #: #: * ``band``: replaced with requested band name filename_regex = '.*' #: Date format string used to parse date from filename. #: #: Not used if :attr:`filename_regex` does not contain a ``date`` group or #: ``start`` and ``stop`` groups. date_format = '%Y%m%d' #: Minimum timestamp if not in filename mint: datetime = pd.Timestamp.min #: Maximum timestamp if not in filename maxt: datetime = pd.Timestamp.max #: True if the dataset only contains model inputs (such as images). False if the #: dataset only contains ground truth model outputs (such as segmentation masks). #: #: The sample returned by the dataset/data loader will use the "image" key if #: *is_image* is True, otherwise it will use the "mask" key. #: #: For datasets with both model inputs and outputs, the recommended approach is #: to use 2 `RasterDataset` instances and combine them using an `IntersectionDataset`. is_image = True #: True if data is stored in a separate file for each band, else False. separate_files = False #: Names of all available bands in the dataset all_bands: tuple[str, ...] = () #: Names of RGB bands in the dataset, used for plotting rgb_bands: tuple[str, ...] = () #: Color map for the dataset, used for plotting cmap: ClassVar[dict[int, tuple[int, int, int, int]]] = {} @property def dtype(self) -> torch.dtype: """The dtype of the dataset (overrides the dtype of the data file via a cast). Defaults to float32 if :attr:`~RasterDataset.is_image` is True, else long. Can be overridden for tasks like pixel-wise regression where the mask should be float32 instead of long. Returns: the dtype of the dataset .. versionadded:: 0.5 """ if self.is_image: return torch.float32 else: return torch.long @property def resampling(self) -> Resampling: """Resampling algorithm used when reading input files. Defaults to bilinear for float dtypes and nearest for int dtypes. Returns: The resampling method to use. .. versionadded:: 0.6 """ # Based on torch.is_floating_point if self.dtype in [torch.float64, torch.float32, torch.float16, torch.bfloat16]: return Resampling.bilinear else: return Resampling.nearest
[docs] def __init__( self, paths: Path | Iterable[Path] = 'data', crs: CRS | None = None, res: float | tuple[float, float] | None = None, bands: Sequence[str] | None = None, transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, cache: bool = True, ) -> None: """Initialize a new RasterDataset instance. Args: paths: one or more root directories to search or files to load crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS (defaults to the resolution of the first file found) bands: bands to return (defaults to all bands) transforms: a function/transform that takes an input sample and returns a transformed version cache: if True, cache file handle to speed up repeated sampling Raises: AssertionError: If *bands* are invalid. DatasetNotFoundError: If dataset is not found. .. versionchanged:: 0.5 *root* was renamed to *paths*. """ self.paths = paths self.bands = bands or self.all_bands self.transforms = transforms self.cache = cache if self.all_bands: assert set(self.bands) <= set(self.all_bands) # Gather information about the dataset filename_regex = re.compile(self.filename_regex, re.VERBOSE) filepaths = [] datetimes = [] geometries = [] for filepath in self.files: match = re.match(filename_regex, os.path.basename(filepath)) if match is not None: try: with rasterio.open(filepath) as src: # See if file has a color map if len(self.cmap) == 0: try: self.cmap = src.colormap(1) # type: ignore[misc] except ValueError: pass if crs is None: crs = src.crs with WarpedVRT(src, crs=crs) as vrt: geometries.append(shapely.box(*vrt.bounds)) if res is None: res = vrt.res except rasterio.errors.RasterioIOError: # Skip files that rasterio is unable to read continue else: filepaths.append(filepath) mint = self.mint maxt = self.maxt if 'date' in match.groupdict(): date = match.group('date') mint, maxt = disambiguate_timestamp(date, self.date_format) elif 'start' in match.groupdict() and 'stop' in match.groupdict(): start = match.group('start') stop = match.group('stop') mint, _ = disambiguate_timestamp(start, self.date_format) _, maxt = disambiguate_timestamp(stop, self.date_format) datetimes.append((mint, maxt)) if len(filepaths) == 0: raise DatasetNotFoundError(self) if not self.separate_files: self.band_indexes = None if self.bands: if self.all_bands: self.band_indexes = [ self.all_bands.index(i) + 1 for i in self.bands ] else: msg = ( f'{self.__class__.__name__} is missing an `all_bands` ' 'attribute, so `bands` cannot be specified.' ) raise AssertionError(msg) if res is not None: if isinstance(res, int | float): res = (res, res) self._res = res # Create the dataset index data = {'filepath': filepaths} index = pd.IntervalIndex.from_tuples(datetimes, closed='both', name='datetime') self.index = GeoDataFrame(data, index=index, geometry=geometries, crs=crs)
[docs] def __getitem__(self, query: GeoSlice) -> dict[str, Any]: """Retrieve input, target, and/or metadata indexed by spatiotemporal slice. Args: query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. Returns: Sample of input, target, and/or metadata at that index. Raises: IndexError: If *query* is not found in the index. """ x, y, t = self._disambiguate_slice(query) interval = pd.Interval(t.start, t.stop) index = self.index.iloc[self.index.index.overlaps(interval)] index = index.iloc[:: t.step] index = index.cx[x.start : x.stop, y.start : y.stop] if index.empty: raise IndexError( f'query: {query} not found in index with bounds: {self.bounds}' ) if self.separate_files: data_list: list[Tensor] = [] filename_regex = re.compile(self.filename_regex, re.VERBOSE) for band in self.bands: band_filepaths = [] for filepath in index.filepath: filename = os.path.basename(filepath) directory = os.path.dirname(filepath) match = re.match(filename_regex, filename) if match: if 'band' in match.groupdict(): start = match.start('band') end = match.end('band') filename = filename[:start] + band + filename[end:] filepath = os.path.join(directory, filename) band_filepaths.append(filepath) data_list.append(self._merge_files(band_filepaths, query)) data = torch.cat(data_list) else: data = self._merge_files(index.filepath, query, self.band_indexes) sample: dict[str, Any] = {'crs': self.crs, 'bounds': query} data = data.to(self.dtype) if self.is_image: sample['image'] = data else: sample['mask'] = data.squeeze(0) if self.transforms is not None: sample = self.transforms(sample) return sample
def _merge_files( self, filepaths: Sequence[str], query: GeoSlice, band_indexes: Sequence[int] | None = None, ) -> Tensor: """Load and merge one or more files. Args: filepaths: one or more files to load and merge query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. band_indexes: indexes of bands to be used Returns: image/mask at that index """ if self.cache: vrt_fhs = [self._cached_load_warp_file(fp) for fp in filepaths] else: vrt_fhs = [self._load_warp_file(fp) for fp in filepaths] x, y, t = self._disambiguate_slice(query) bounds = (x.start, y.start, x.stop, y.stop) res = (x.step, y.step) dest, _ = rasterio.merge.merge( vrt_fhs, bounds, res, indexes=band_indexes, resampling=self.resampling ) # Use array_to_tensor since merge may return uint16/uint32 arrays. tensor = array_to_tensor(dest) return tensor @functools.lru_cache(maxsize=128) def _cached_load_warp_file(self, filepath: Path) -> DatasetReader: """Cached version of :meth:`_load_warp_file`. Args: filepath: file to load and warp Returns: file handle of warped VRT """ return self._load_warp_file(filepath) def _load_warp_file(self, filepath: Path) -> DatasetReader: """Load and warp a file to the correct CRS and resolution. Args: filepath: file to load and warp Returns: file handle of warped VRT """ src = rasterio.open(filepath) # Only warp if necessary if src.crs != self.crs: vrt = WarpedVRT(src, crs=self.crs) src.close() return vrt else: return src
[docs]class VectorDataset(GeoDataset): """Abstract base class for :class:`GeoDataset` stored as vector files.""" #: Regular expression used to extract date from filename. #: #: The expression should use named groups. The expression may contain any number of #: groups. The following groups are specifically searched for by the base class: #: #: * ``date``: used to calculate ``mint`` and ``maxt`` for ``index`` insertion filename_regex = '.*' #: Date format string used to parse date from filename. #: #: Not used if :attr:`filename_regex` does not contain a ``date`` group. date_format = '%Y%m%d' @property def dtype(self) -> torch.dtype: """The dtype of the dataset (overrides the dtype of the data file via a cast). Defaults to long. Returns: the dtype of the dataset .. versionadded:: 0.6 """ return torch.long
[docs] def __init__( self, paths: Path | Iterable[Path] = 'data', crs: CRS | None = None, res: float | tuple[float, float] = (0.0001, 0.0001), transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, label_name: str | None = None, task: Literal[ 'object_detection', 'semantic_segmentation', 'instance_segmentation' ] = 'semantic_segmentation', layer: str | int | None = None, ) -> None: """Initialize a new VectorDataset instance. Args: paths: one or more root directories to search or files to load crs: :term:`coordinate reference system (CRS)` to warp to (defaults to the CRS of the first file found) res: resolution of the dataset in units of CRS transforms: a function/transform that takes input sample and its target as entry and returns a transformed version label_name: name of the dataset property that has the label to be rasterized into the mask task: computer vision task the dataset is used for. Supported output types `object_detection`, `semantic_segmentation`, `instance_segmentation` layer: if the input is a multilayer vector dataset, such as a geopackage, specify which layer to use. Can be int to specify the index of the layer, str to select the layer with that name or None which opens the first layer Raises: DatasetNotFoundError: If dataset is not found. ValueError: If task is not one of allowed tasks .. versionadded:: 0.4 The *label_name* parameter. .. versionchanged:: 0.5 *root* was renamed to *paths*. .. versionadded:: 0.8 The *task* and *layer* parameters """ self.paths = paths self.transforms = transforms self.label_name = label_name # List of allowed tasks allowed_tasks = [ 'semantic_segmentation', 'object_detection', 'instance_segmentation', ] if task not in allowed_tasks: raise ValueError(f'Invalid task: {task!r}. Must be one of {allowed_tasks}') self.task = task self.layer = layer # Gather information about the dataset filename_regex = re.compile(self.filename_regex, re.VERBOSE) filepaths = [] datetimes = [] geometries = [] for filepath in self.files: match = re.match(filename_regex, os.path.basename(filepath)) if match is not None: try: with fiona.open(filepath, layer=layer) as src: if crs is None: crs = CRS.from_wkt(src.crs_wkt) minx, miny, maxx, maxy = src.bounds (minx, maxx), (miny, maxy) = fiona.transform.transform( src.crs, crs.to_wkt(), [minx, maxx], [miny, maxy] ) geometry = shapely.box(minx, miny, maxx, maxy) geometries.append(geometry) except fiona.errors.FionaValueError: # Skip files that fiona is unable to read continue else: filepaths.append(filepath) mint = pd.Timestamp.min maxt = pd.Timestamp.max if 'date' in match.groupdict(): date = match.group('date') mint, maxt = disambiguate_timestamp(date, self.date_format) datetimes.append((mint, maxt)) if len(filepaths) == 0: raise DatasetNotFoundError(self) if isinstance(res, int | float): res = (res, res) self._res = res # Create the dataset index data = {'filepath': filepaths} index = pd.IntervalIndex.from_tuples(datetimes, closed='both', name='datetime') self.index = GeoDataFrame(data, index=index, geometry=geometries, crs=crs)
[docs] def __getitem__(self, query: GeoSlice) -> dict[str, Any]: """Retrieve input, target, and/or metadata indexed by spatiotemporal slice. Args: query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. Returns: Sample of input, target, and/or metadata at that index. Raises: IndexError: If *query* is not found in the index. """ x, y, t = self._disambiguate_slice(query) interval = pd.Interval(t.start, t.stop) index = self.index.iloc[self.index.index.overlaps(interval)] index = index.iloc[:: t.step] index = index.cx[x.start : x.stop, y.start : y.stop] if index.empty: raise IndexError( f'query: {query} not found in index with bounds: {self.bounds}' ) shapes = [] for filepath in index.filepath: with fiona.open(filepath, layer=self.layer) as src: # We need to know the bounding box of the query in the source CRS (minx, maxx), (miny, maxy) = fiona.transform.transform( self.crs.to_wkt(), src.crs, [x.start, x.stop], [y.start, y.stop] ) # Filter geometries to those that intersect with the bounding box for feature in src.filter(bbox=(minx, miny, maxx, maxy)): # Warp geometries to requested CRS shape = fiona.transform.transform_geom( src.crs, self.crs.to_wkt(), feature['geometry'] ) label = self.get_label(feature) shapes.append((shape, label)) # Rasterize geometries width = (x.stop - x.start) / x.step height = (y.stop - y.start) / y.step transform = rasterio.transform.from_bounds( x.start, y.start, x.stop, y.stop, width, height ) if shapes: match self.task: case 'semantic_segmentation': masks = rasterio.features.rasterize( shapes, out_shape=(round(height), round(width)), transform=transform, ) case 'object_detection': # Get boxes for object detection or instance segmentation px_shapes = [ convert_poly_coords( shapely.geometry.shape(s[0]), transform, inverse=True ) for s in shapes ] px_shapes = [ (shapely.clip_by_rect(p, 0, 0, width, height)) for p in px_shapes ] # Get labels labels = np.array([s[1] for s in shapes]).astype(np.int32) # xmin, ymin, xmax, ymax format boxes_xyxy = np.array( [ [p.bounds[0], p.bounds[1], p.bounds[2], p.bounds[3]] for p in px_shapes ] ).astype(np.float32) case 'instance_segmentation': # Get boxes for object detection or instance segmentation px_shapes = [ convert_poly_coords( shapely.geometry.shape(s[0]), transform, inverse=True ) for s in shapes ] px_shapes = [ (shapely.clip_by_rect(p, 0, 0, width, height)) for p in px_shapes ] # Get labels labels = np.array([s[1] for s in shapes]).astype(np.int32) # xmin, ymin, xmax, ymax format boxes_xyxy = np.array( [ [p.bounds[0], p.bounds[1], p.bounds[2], p.bounds[3]] for p in px_shapes ] ).astype(np.float32) masks = rasterio.features.rasterize( [(s[0], i + 1) for i, s in enumerate(shapes)], out_shape=(round(height), round(width)), transform=transform, ) obj_ids = np.unique(masks) # first id is the background, so remove it obj_ids = obj_ids[1:] # convert (H, W) mask a set of binary masks masks = (masks == obj_ids[:, None, None]).astype(np.uint8) else: # If no features are found in this key, return an empty mask # with the default fill value and dtype used by rasterize masks = np.zeros((round(height), round(width)), dtype=np.uint8) boxes_xyxy = np.empty((0, 4), dtype=np.float32) labels = np.empty((0,), dtype=np.int32) # Use array_to_tensor since rasterize may return uint16/uint32 arrays. sample: dict[str, Any] = {'crs': self.crs, 'bounds': query} match self.task: case 'semantic_segmentation': sample['mask'] = array_to_tensor(masks).to(self.dtype) case 'object_detection': sample['bbox_xyxy'] = torch.from_numpy(boxes_xyxy) sample['label'] = torch.from_numpy(labels) case 'instance_segmentation': sample['mask'] = array_to_tensor(masks) sample['bbox_xyxy'] = torch.from_numpy(boxes_xyxy) sample['label'] = torch.from_numpy(labels) if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def get_label(self, feature: 'fiona.model.Feature') -> int: """Get label value to use for rendering a feature. Args: feature: the :class:`fiona.model.Feature` from which to extract the label. Returns: the integer label, or 0 if the feature should not be rendered. .. versionadded:: 0.6 """ if self.label_name: return int(feature['properties'][self.label_name]) return 1
[docs]class NonGeoDataset(Dataset[dict[str, Any]], abc.ABC): """Abstract base class for datasets lacking geospatial information. This base class is designed for datasets with pre-defined image chips. """
[docs] @abc.abstractmethod def __getitem__(self, index: int) -> dict[str, Any]: """Return an index within the dataset. Args: index: index to return Returns: data and labels at that index Raises: IndexError: if index is out of range of the dataset """
[docs] @abc.abstractmethod def __len__(self) -> int: """Return the length of the dataset. Returns: length of the dataset """
[docs] def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: NonGeoDataset size: {len(self)}"""
[docs]class NonGeoClassificationDataset(NonGeoDataset, ImageFolder): # type: ignore[misc] """Abstract base class for classification datasets lacking geospatial information. This base class is designed for datasets with pre-defined image chips which are separated into separate folders per class. """
[docs] def __init__( self, root: Path = 'data', transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, loader: Callable[[Path], Any] | None = pil_loader, is_valid_file: Callable[[Path], bool] | None = None, ) -> None: """Initialize a new NonGeoClassificationDataset instance. Args: root: root directory where dataset can be found transforms: a function/transform that takes input sample and its target as entry and returns a transformed version loader: a callable function which takes as input a path to an image and returns a PIL Image or numpy array is_valid_file: A function that takes the path of an Image file and checks if the file is a valid file """ # When transform & target_transform are None, ImageFolder.__getitem__(index) # returns a PIL.Image and int for image and label, respectively super().__init__( root=root, transform=None, target_transform=None, loader=loader, is_valid_file=is_valid_file, ) # Must be set after calling super().__init__() self.transforms = transforms
[docs] def __getitem__(self, index: int) -> dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: data and label at that index """ image, label = self._load_image(index) sample = {'image': image, 'label': label} if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.imgs)
def _load_image(self, index: int) -> tuple[Tensor, Tensor]: """Load a single image and its class label. Args: index: index to return Returns: the image and class label """ img, label = ImageFolder.__getitem__(self, index) array: np.typing.NDArray[np.int_] = np.array(img) tensor = torch.from_numpy(array).float() # Convert from HxWxC to CxHxW tensor = tensor.permute((2, 0, 1)) label = torch.tensor(label) return tensor, label
[docs]class IntersectionDataset(GeoDataset): """Dataset representing the intersection of two GeoDatasets. This allows users to do things like: * Combine image and target labels and sample from both simultaneously (e.g., Landsat and CDL) * Combine datasets for multiple image sources for multimodal learning or data fusion (e.g., Landsat and Sentinel) * Combine image and other raster data (e.g., elevation, temperature, pressure) and sample from both simultaneously (e.g., Landsat and Aster Global DEM) These combinations require that all queries are present in *both* datasets, and can be combined using an :class:`IntersectionDataset`: .. code-block:: python dataset = landsat & cdl .. versionadded:: 0.2 """
[docs] def __init__( self, dataset1: GeoDataset, dataset2: GeoDataset, spatial_only: bool = False, collate_fn: Callable[ [Sequence[dict[str, Any]]], dict[str, Any] ] = concat_samples, transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, ) -> None: """Initialize a new IntersectionDataset instance. When computing the intersection between two datasets that both contain model inputs (such as images) or model outputs (such as masks), the default behavior is to stack the data along the channel dimension. The *collate_fn* parameter can be used to change this behavior. Args: dataset1: the first dataset dataset2: the second dataset spatial_only: if True, ignore temporal dimension when computing intersection collate_fn: function used to collate samples transforms: a function/transform that takes input sample and its target as entry and returns a transformed version Raises: RuntimeError: if datasets have no spatiotemporal intersection ValueError: if either dataset is not a :class:`GeoDataset` .. versionadded:: 0.8 The *spatial_only* parameter. .. versionadded:: 0.4 The *transforms* parameter. """ self.datasets = [dataset1, dataset2] self.collate_fn = collate_fn self.transforms = transforms for ds in self.datasets: if not isinstance(ds, GeoDataset): raise ValueError('IntersectionDataset only supports GeoDatasets') dataset2.crs = dataset1.crs dataset2.res = dataset1.res # Spatial intersection index1 = dataset1.index.reset_index() index2 = dataset2.index.reset_index() self.index = gpd.overlay( index1, index2, how='intersection', keep_geom_type=True ) if self.index.empty: raise RuntimeError('Datasets have no spatial intersection') # Temporal intersection if not spatial_only: datetime_1 = pd.IntervalIndex(self.index.pop('datetime_1')) datetime_2 = pd.IntervalIndex(self.index.pop('datetime_2')) mint = np.maximum(datetime_1.left, datetime_2.left) maxt = np.minimum(datetime_1.right, datetime_2.right) valid = maxt >= mint mint = mint[valid] maxt = maxt[valid] self.index = self.index[valid] self.index.index = pd.IntervalIndex.from_arrays( mint, maxt, closed='both', name='datetime' ) if self.index.empty: msg = 'Datasets have no temporal intersection. Use `spatial_only=True`' msg += ' if you want to ignore temporal intersection' raise RuntimeError(msg)
[docs] def __getitem__(self, query: GeoSlice) -> dict[str, Any]: """Retrieve input, target, and/or metadata indexed by spatiotemporal slice. Args: query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. Returns: Sample of input, target, and/or metadata at that index. Raises: IndexError: If *query* is not found in the index. """ # All datasets are guaranteed to have a valid query samples = [ds[query] for ds in self.datasets] sample = self.collate_fn(samples) if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: IntersectionDataset bbox: {self.bounds} size: {len(self)}"""
@property def crs(self) -> CRS: """:term:`coordinate reference system (CRS)` of both datasets. Returns: The :term:`coordinate reference system (CRS)`. """ return self.datasets[0].crs @crs.setter def crs(self, new_crs: CRS) -> None: """Change the :term:`coordinate reference system (CRS)` of both datasets. Args: new_crs: New :term:`coordinate reference system (CRS)`. """ self.index.to_crs(new_crs, inplace=True) self.datasets[0].crs = new_crs self.datasets[1].crs = new_crs @property def res(self) -> tuple[float, float]: """Resolution of both datasets in units of CRS. Returns: Resolution of both datasets. """ return self.datasets[0].res @res.setter def res(self, new_res: float | tuple[float, float]) -> None: """Change the resolution of both datasets. Args: new_res: New resolution. """ self.datasets[0].res = new_res self.datasets[1].res = new_res
[docs]class UnionDataset(GeoDataset): """Dataset representing the union of two GeoDatasets. This allows users to do things like: * Combine datasets for multiple image sources and treat them as equivalent (e.g., Landsat 7 and Landsat 8) * Combine datasets for disparate geospatial locations (e.g., Chesapeake NY and PA) These combinations require that all queries are present in *at least one* dataset, and can be combined using a :class:`UnionDataset`: .. code-block:: python dataset = landsat7 | landsat8 .. versionadded:: 0.2 """
[docs] def __init__( self, dataset1: GeoDataset, dataset2: GeoDataset, collate_fn: Callable[ [Sequence[dict[str, Any]]], dict[str, Any] ] = merge_samples, transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, ) -> None: """Initialize a new UnionDataset instance. When computing the union between two datasets that both contain model inputs (such as images) or model outputs (such as masks), the default behavior is to merge the data to create a single image/mask. The *collate_fn* parameter can be used to change this behavior. Args: dataset1: the first dataset dataset2: the second dataset collate_fn: function used to collate samples transforms: a function/transform that takes input sample and its target as entry and returns a transformed version Raises: ValueError: if either dataset is not a :class:`GeoDataset` .. versionadded:: 0.4 The *transforms* parameter. """ self.datasets = [dataset1, dataset2] self.collate_fn = collate_fn self.transforms = transforms for ds in self.datasets: if not isinstance(ds, GeoDataset): raise ValueError('UnionDataset only supports GeoDatasets') dataset2.crs = dataset1.crs dataset2.res = dataset1.res self.index = pd.concat([dataset1.index, dataset2.index])
[docs] def __getitem__(self, query: GeoSlice) -> dict[str, Any]: """Retrieve input, target, and/or metadata indexed by spatiotemporal slice. Args: query: [xmin:xmax:xres, ymin:ymax:yres, tmin:tmax:tres] coordinates to index. Returns: Sample of input, target, and/or metadata at that index. Raises: IndexError: If *query* is not found in the index. """ # Not all datasets are guaranteed to have a valid query samples = [] for ds in self.datasets: try: samples.append(ds[query]) except IndexError: pass if not samples: raise IndexError( f'query: {query} not found in index with bounds: {self.bounds}' ) sample = self.collate_fn(samples) if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __str__(self) -> str: """Return the informal string representation of the object. Returns: informal string representation """ return f"""\ {self.__class__.__name__} Dataset type: UnionDataset bbox: {self.bounds} size: {len(self)}"""
@property def crs(self) -> CRS: """:term:`coordinate reference system (CRS)` of both datasets. Returns: The :term:`coordinate reference system (CRS)`. """ return self.datasets[0].crs @crs.setter def crs(self, new_crs: CRS) -> None: """Change the :term:`coordinate reference system (CRS)` of both datasets. Args: new_crs: New :term:`coordinate reference system (CRS)`. """ self.index.to_crs(new_crs, inplace=True) self.datasets[0].crs = new_crs self.datasets[1].crs = new_crs @property def res(self) -> tuple[float, float]: """Resolution of both datasets in units of CRS. Returns: The resolution of both datasets. """ return self.datasets[0].res @res.setter def res(self, new_res: float | tuple[float, float]) -> None: """Change the resolution of both datasets. Args: new_res: New resolution. """ self.datasets[0].res = new_res self.datasets[1].res = new_res

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources