Source code for torchgeo.datasets.dior
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""DIOR dataset."""
import os
from collections.abc import Callable
from typing import Any, ClassVar, Literal
from xml.etree import ElementTree
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from matplotlib.figure import Figure
from PIL import Image
from torch import Tensor
from .errors import DatasetNotFoundError
from .geo import NonGeoDataset
from .utils import (
Path,
check_integrity,
download_and_extract_archive,
download_url,
extract_archive,
)
def parse_pascal_voc(path: Path) -> dict[str, Any]:
"""Read a PASCAL VOC annotation file.
Args:
path: path to xml file
Returns:
dict of image filename, bounding box coords, and class labels
"""
et = ElementTree.parse(path)
element = et.getroot()
filename = element.find('filename').text # type: ignore[union-attr]
labels, bboxes = [], []
for obj in element.findall('object'):
bndbox = obj.find('bndbox')
bbox = [
int(bndbox.find('xmin').text), # type: ignore[union-attr, arg-type]
int(bndbox.find('ymin').text), # type: ignore[union-attr, arg-type]
int(bndbox.find('xmax').text), # type: ignore[union-attr, arg-type]
int(bndbox.find('ymax').text), # type: ignore[union-attr, arg-type]
]
label = obj.find('name').text # type: ignore[union-attr]
bboxes.append(bbox)
labels.append(label)
return dict(filename=filename, bboxes=bboxes, labels=labels)
[docs]class DIOR(NonGeoDataset):
"""DIOR dataset.
`DIOR <https://arxiv.org/abs/1909.00133>`__ dataset contains horizontal bounding box
annotations of Google Earth Aerial RGB imagery. The test split does not contain bounding
box annotations and labels.
Dataset features:
* 20 classes
* 192,472 manually annotated bounding box instances
Dataset format:
* Images are three channel .jpg files.
* Annotations are in `Pascal VOC XML format
<https://roboflow.com/formats/pascal-voc-xml>`_
Classes:
0. Airplane
1. Airport
2. Baseball Field
3. Basketball Court
4. Bridge
5. Chimney
6. Dam
7. Expressway Service Area
8. Expressway Toll Station
9. Golf Field
10. Ground Track Field
11. Harbor
12. Overpass
13. Ship
14. Stadium
15. Storage Tank
16. Tennis Court
17. Train Station
18. Vehicle
19. Windmill
If you use this dataset in your research, please cite the following paper:
* https://arxiv.org/abs/1909.00133
.. versionadded:: 0.7
"""
url = 'https://hf.co/datasets/torchgeo/dior/resolve/ec7be9567d2e08eb3d3401c15a52ee2145d0ef01/{}'
files: ClassVar[dict[str, dict[str, dict[str, str]]]] = {
'trainval': {
'images': {
'filename': 'Images_trainval.zip',
'md5': '070e9314120403e5c965d12fe5321cb0',
},
'labels': {
'filename': 'Annotations_trainval.zip',
'md5': '90e045de37255c5919bbecf659b72c1a',
},
},
'test': {
'images': {
'filename': 'Images_test.zip',
'md5': '97f3cbc86de0867624a6a34190c694ae',
}
},
}
valid_splits = ('train', 'val', 'test')
classes = (
'airplane',
'airport',
'baseballfield',
'basketballcourt',
'bridge',
'chimney',
'dam',
'expresswayservicearea',
'expresswaytollstation',
'golffield',
'groundtrackfield',
'harbor',
'overpass',
'ship',
'stadium',
'storagetank',
'tenniscourt',
'trainstation',
'vehicle',
'windmill',
)
[docs] def __init__(
self,
root: Path = 'data',
split: Literal['train', 'val', 'test'] = 'train',
transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None,
download: bool = False,
checksum: bool = False,
) -> None:
"""Initialize a new DIOR dataset instance.
Args:
root: root directory where dataset can be found
split: split of the dataset to use, one of 'train', 'val', 'test'
transforms: a function/transform that takes input sample and its target as
entry and returns a transformed version
download: if True, download dataset and store it in the root directory
checksum: if True, check the MD5 of the downloaded files (may be slow)
Raises:
DatasetNotFoundError: If dataset is not found or corrupted and *download* is False.
AssertionError: If *split* argument is invalid.
"""
self.root = root
self.transforms = transforms
self.checksum = checksum
self.download = download
assert split in self.valid_splits, f'Split must be one of {self.valid_splits}.'
self.split = split
self._verify()
self.sample_df = pd.read_csv(os.path.join(self.root, 'sample_df.csv'))
self.sample_df = self.sample_df[
self.sample_df['split'] == self.split
].reset_index(drop=True)
self.class_to_idx: dict[str, int] = {c: i for i, c in enumerate(self.classes)}
[docs] def __len__(self) -> int:
"""Return the number of data points in the dataset.
Returns:
length of the dataset
"""
return len(self.sample_df)
[docs] def __getitem__(self, idx: int) -> dict[str, Tensor]:
"""Return an index within the dataset.
Args:
idx: index to return
Returns:
data and label at that index
"""
row = self.sample_df.iloc[idx]
image = self._load_image(os.path.join(self.root, row['image_path']))
sample: dict[str, Tensor] = {'image': image}
if self.split != 'test':
boxes, labels = self._load_target(
os.path.join(self.root, row['label_path'])
)
sample['bbox_xyxy'] = boxes
sample['label'] = labels
if self.transforms is not None:
sample = self.transforms(sample)
return sample
def _load_image(self, path: Path) -> Tensor:
"""Load a single image.
Args:
path: path to the image
Returns:
the image
"""
with Image.open(path) as img:
array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB'))
tensor: Tensor = torch.from_numpy(array)
# Convert from HxWxC to CxHxW
tensor = tensor.permute((2, 0, 1))
return tensor
def _load_target(self, path: Path) -> tuple[Tensor, Tensor]:
"""Load the target mask for a single image.
Args:
path: path to the annotation file
Returns:
the target bounding boxes and labels
"""
parsed = parse_pascal_voc(path)
boxes = torch.tensor(parsed['bboxes'], dtype=torch.float32)
labels = torch.tensor(
[self.class_to_idx[label] for label in parsed['labels']]
).long()
return boxes, labels
def _verify(self) -> None:
"""Verify the integrity of the dataset."""
df_path = os.path.join(self.root, 'sample_df.csv')
exists = []
if os.path.exists(df_path):
exists.append(True)
df = pd.read_csv(df_path)
df = df[df['split'] == self.split].reset_index(drop=True)
for idx, row in df.iterrows():
if os.path.exists(os.path.join(self.root, row['image_path'])):
exists.append(True)
else:
exists.append(False)
else:
exists.append(False)
if all(exists):
return
exists = []
if self.split in ['train', 'val']:
files = self.files['trainval']
else:
files = self.files['test']
for key in files:
filename = files[key]['filename']
md5 = files[key]['md5']
path = os.path.join(self.root, filename)
if os.path.exists(path):
if self.checksum and not check_integrity(path, md5):
raise RuntimeError('Dataset found, but corrupted.')
extract_archive(path)
exists.append(True)
else:
exists.append(False)
if all(exists):
return
if not self.download:
raise DatasetNotFoundError(self)
self._download()
def _download(self) -> None:
"""Download the dataset and extract it."""
if self.split in ['train', 'val']:
files = self.files['trainval']
else:
files = self.files['test']
for key in files:
filename = files[key]['filename']
md5 = files[key]['md5']
download_and_extract_archive(
self.url.format(filename),
self.root,
filename=filename,
md5=md5 if self.checksum else None,
)
# download the sample_df.csv file
download_url(
self.url.format('sample_df.csv'), self.root, filename='sample_df.csv'
)
[docs] def plot(
self,
sample: dict[str, Tensor],
show_titles: bool = True,
suptitle: str | None = None,
box_alpha: float = 0.7,
) -> Figure:
"""Plot a sample from the dataset.
Args:
sample: a sample returned by :meth:`__getitem__`
show_titles: flag indicating whether to show titles above each panel
suptitle: optional string to use as a suptitle
box_alpha: alpha value for boxes
Returns:
a matplotlib Figure with the rendered sample
"""
image = sample['image'].permute((1, 2, 0)).numpy()
boxes = sample['bbox_xyxy'].numpy()
labels = sample['label'].numpy()
fig, axs = plt.subplots(ncols=1, figsize=(10, 10))
axs.imshow(image)
axs.axis('off')
cm = plt.get_cmap('gist_rainbow')
for box, label_idx in zip(boxes, labels):
color = cm(label_idx / len(self.classes))
label = self.classes[label_idx]
# Horizontal box: [xmin, ymin, xmax, ymax]
x1, y1, x2, y2 = box
rect = patches.Rectangle(
(x1, y1),
x2 - x1,
y2 - y1,
linewidth=2,
alpha=box_alpha,
linestyle='solid',
edgecolor=color,
facecolor='none',
)
axs.add_patch(rect)
# Add label above box
axs.text(
x1,
y1 - 5,
label,
color='white',
fontsize=8,
bbox=dict(facecolor=color, alpha=box_alpha),
)
if suptitle is not None:
plt.suptitle(suptitle)
return fig