Shortcuts

Source code for torchgeo.datasets.dior

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""DIOR dataset."""

import os
from collections.abc import Callable
from typing import Any, ClassVar, Literal
from xml.etree import ElementTree

import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from matplotlib.figure import Figure
from PIL import Image
from torch import Tensor

from .errors import DatasetNotFoundError
from .geo import NonGeoDataset
from .utils import (
    Path,
    check_integrity,
    download_and_extract_archive,
    download_url,
    extract_archive,
)


def parse_pascal_voc(path: Path) -> dict[str, Any]:
    """Read a PASCAL VOC annotation file.

    Args:
        path: path to xml file

    Returns:
        dict of image filename, bounding box coords, and class labels
    """
    et = ElementTree.parse(path)
    element = et.getroot()
    filename = element.find('filename').text  # type: ignore[union-attr]
    labels, bboxes = [], []

    for obj in element.findall('object'):
        bndbox = obj.find('bndbox')
        bbox = [
            int(bndbox.find('xmin').text),  # type: ignore[union-attr, arg-type]
            int(bndbox.find('ymin').text),  # type: ignore[union-attr, arg-type]
            int(bndbox.find('xmax').text),  # type: ignore[union-attr, arg-type]
            int(bndbox.find('ymax').text),  # type: ignore[union-attr, arg-type]
        ]
        label = obj.find('name').text  # type: ignore[union-attr]
        bboxes.append(bbox)
        labels.append(label)

    return dict(filename=filename, bboxes=bboxes, labels=labels)


[docs]class DIOR(NonGeoDataset): """DIOR dataset. `DIOR <https://arxiv.org/abs/1909.00133>`__ dataset contains horizontal bounding box annotations of Google Earth Aerial RGB imagery. The test split does not contain bounding box annotations and labels. Dataset features: * 20 classes * 192,472 manually annotated bounding box instances Dataset format: * Images are three channel .jpg files. * Annotations are in `Pascal VOC XML format <https://roboflow.com/formats/pascal-voc-xml>`_ Classes: 0. Airplane 1. Airport 2. Baseball Field 3. Basketball Court 4. Bridge 5. Chimney 6. Dam 7. Expressway Service Area 8. Expressway Toll Station 9. Golf Field 10. Ground Track Field 11. Harbor 12. Overpass 13. Ship 14. Stadium 15. Storage Tank 16. Tennis Court 17. Train Station 18. Vehicle 19. Windmill If you use this dataset in your research, please cite the following paper: * https://arxiv.org/abs/1909.00133 .. versionadded:: 0.7 """ url = 'https://hf.co/datasets/torchgeo/dior/resolve/ec7be9567d2e08eb3d3401c15a52ee2145d0ef01/{}' files: ClassVar[dict[str, dict[str, dict[str, str]]]] = { 'trainval': { 'images': { 'filename': 'Images_trainval.zip', 'md5': '070e9314120403e5c965d12fe5321cb0', }, 'labels': { 'filename': 'Annotations_trainval.zip', 'md5': '90e045de37255c5919bbecf659b72c1a', }, }, 'test': { 'images': { 'filename': 'Images_test.zip', 'md5': '97f3cbc86de0867624a6a34190c694ae', } }, } valid_splits = ('train', 'val', 'test') classes = ( 'airplane', 'airport', 'baseballfield', 'basketballcourt', 'bridge', 'chimney', 'dam', 'expresswayservicearea', 'expresswaytollstation', 'golffield', 'groundtrackfield', 'harbor', 'overpass', 'ship', 'stadium', 'storagetank', 'tenniscourt', 'trainstation', 'vehicle', 'windmill', )
[docs] def __init__( self, root: Path = 'data', split: Literal['train', 'val', 'test'] = 'train', transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, download: bool = False, checksum: bool = False, ) -> None: """Initialize a new DIOR dataset instance. Args: root: root directory where dataset can be found split: split of the dataset to use, one of 'train', 'val', 'test' transforms: a function/transform that takes input sample and its target as entry and returns a transformed version download: if True, download dataset and store it in the root directory checksum: if True, check the MD5 of the downloaded files (may be slow) Raises: DatasetNotFoundError: If dataset is not found or corrupted and *download* is False. AssertionError: If *split* argument is invalid. """ self.root = root self.transforms = transforms self.checksum = checksum self.download = download assert split in self.valid_splits, f'Split must be one of {self.valid_splits}.' self.split = split self._verify() self.sample_df = pd.read_csv(os.path.join(self.root, 'sample_df.csv')) self.sample_df = self.sample_df[ self.sample_df['split'] == self.split ].reset_index(drop=True) self.class_to_idx: dict[str, int] = {c: i for i, c in enumerate(self.classes)}
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.sample_df)
[docs] def __getitem__(self, idx: int) -> dict[str, Tensor]: """Return an index within the dataset. Args: idx: index to return Returns: data and label at that index """ row = self.sample_df.iloc[idx] image = self._load_image(os.path.join(self.root, row['image_path'])) sample: dict[str, Tensor] = {'image': image} if self.split != 'test': boxes, labels = self._load_target( os.path.join(self.root, row['label_path']) ) sample['bbox_xyxy'] = boxes sample['label'] = labels if self.transforms is not None: sample = self.transforms(sample) return sample
def _load_image(self, path: Path) -> Tensor: """Load a single image. Args: path: path to the image Returns: the image """ with Image.open(path) as img: array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB')) tensor: Tensor = torch.from_numpy(array) # Convert from HxWxC to CxHxW tensor = tensor.permute((2, 0, 1)) return tensor def _load_target(self, path: Path) -> tuple[Tensor, Tensor]: """Load the target mask for a single image. Args: path: path to the annotation file Returns: the target bounding boxes and labels """ parsed = parse_pascal_voc(path) boxes = torch.tensor(parsed['bboxes'], dtype=torch.float32) labels = torch.tensor( [self.class_to_idx[label] for label in parsed['labels']] ).long() return boxes, labels def _verify(self) -> None: """Verify the integrity of the dataset.""" df_path = os.path.join(self.root, 'sample_df.csv') exists = [] if os.path.exists(df_path): exists.append(True) df = pd.read_csv(df_path) df = df[df['split'] == self.split].reset_index(drop=True) for idx, row in df.iterrows(): if os.path.exists(os.path.join(self.root, row['image_path'])): exists.append(True) else: exists.append(False) else: exists.append(False) if all(exists): return exists = [] if self.split in ['train', 'val']: files = self.files['trainval'] else: files = self.files['test'] for key in files: filename = files[key]['filename'] md5 = files[key]['md5'] path = os.path.join(self.root, filename) if os.path.exists(path): if self.checksum and not check_integrity(path, md5): raise RuntimeError('Dataset found, but corrupted.') extract_archive(path) exists.append(True) else: exists.append(False) if all(exists): return if not self.download: raise DatasetNotFoundError(self) self._download() def _download(self) -> None: """Download the dataset and extract it.""" if self.split in ['train', 'val']: files = self.files['trainval'] else: files = self.files['test'] for key in files: filename = files[key]['filename'] md5 = files[key]['md5'] download_and_extract_archive( self.url.format(filename), self.root, filename=filename, md5=md5 if self.checksum else None, ) # download the sample_df.csv file download_url( self.url.format('sample_df.csv'), self.root, filename='sample_df.csv' )
[docs] def plot( self, sample: dict[str, Tensor], show_titles: bool = True, suptitle: str | None = None, box_alpha: float = 0.7, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle box_alpha: alpha value for boxes Returns: a matplotlib Figure with the rendered sample """ image = sample['image'].permute((1, 2, 0)).numpy() boxes = sample['bbox_xyxy'].numpy() labels = sample['label'].numpy() fig, axs = plt.subplots(ncols=1, figsize=(10, 10)) axs.imshow(image) axs.axis('off') cm = plt.get_cmap('gist_rainbow') for box, label_idx in zip(boxes, labels): color = cm(label_idx / len(self.classes)) label = self.classes[label_idx] # Horizontal box: [xmin, ymin, xmax, ymax] x1, y1, x2, y2 = box rect = patches.Rectangle( (x1, y1), x2 - x1, y2 - y1, linewidth=2, alpha=box_alpha, linestyle='solid', edgecolor=color, facecolor='none', ) axs.add_patch(rect) # Add label above box axs.text( x1, y1 - 5, label, color='white', fontsize=8, bbox=dict(facecolor=color, alpha=box_alpha), ) if suptitle is not None: plt.suptitle(suptitle) return fig

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources