Shortcuts

Source code for torchgeo.datasets.cyclone

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""Tropical Cyclone Wind Estimation Competition dataset."""

import os
from collections.abc import Callable
from functools import lru_cache
from typing import Any

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from matplotlib.figure import Figure
from PIL import Image
from torch import Tensor

from .errors import DatasetNotFoundError
from .geo import NonGeoDataset
from .utils import Path, which


[docs]class TropicalCyclone(NonGeoDataset): """Tropical Cyclone Wind Estimation Competition dataset. A collection of tropical storms in the Atlantic and East Pacific Oceans from 2000 to 2019 with corresponding maximum sustained surface wind speed. This dataset is split into training and test categories for the purpose of a competition. Read more about the competition here: https://www.drivendata.org/competitions/72/predict-wind-speeds/. If you use this dataset in your research, please cite the following paper: * https://doi.org/10.1109/JSTARS.2020.3011907 .. note:: This dataset requires the following additional library to be installed: * `azcopy <https://github.com/Azure/azure-storage-azcopy>`_: to download the dataset from Source Cooperative. .. versionchanged:: 0.4 Class name changed from TropicalCycloneWindEstimation to TropicalCyclone to be consistent with TropicalCycloneDataModule. """ url = ( 'https://radiantearth.blob.core.windows.net/mlhub/nasa-tropical-storm-challenge' ) size = 366
[docs] def __init__( self, root: Path = 'data', split: str = 'train', transforms: Callable[[dict[str, Any]], dict[str, Any]] | None = None, download: bool = False, ) -> None: """Initialize a new TropicalCyclone instance. Args: root: root directory where dataset can be found split: one of "train" or "test" transforms: a function/transform that takes input sample and its target as entry and returns a transformed version download: if True, download dataset and store it in the root directory Raises: AssertionError: if ``split`` argument is invalid DatasetNotFoundError: If dataset is not found and *download* is False. """ assert split in {'train', 'test'} self.root = root self.split = split self.transforms = transforms self.download = download self.filename = f'{split}_set' if split == 'train': self.filename = f'{split}ing_set' self._verify() self.features = pd.read_csv(os.path.join(root, f'{self.filename}_features.csv')) self.labels = pd.read_csv(os.path.join(root, f'{self.filename}_labels.csv'))
[docs] def __getitem__(self, index: int) -> dict[str, Any]: """Return an index within the dataset. Args: index: index to return Returns: data, labels, field ids, and metadata at that index """ sample = { 'relative_time': torch.tensor(self.features.iat[index, 2]), 'ocean': torch.tensor(self.features.iat[index, 3]), 'label': torch.tensor(self.labels.iat[index, 1]), } image_id = self.labels.iat[index, 0] sample['image'] = self._load_image(image_id) if self.transforms is not None: sample = self.transforms(sample) return sample
[docs] def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.labels)
@lru_cache def _load_image(self, image_id: str) -> Tensor: """Load a single image. Args: image_id: Filename of the image. Returns: the image """ filename = os.path.join(self.root, self.split, f'{image_id}.jpg') with Image.open(filename) as img: if img.height != self.size or img.width != self.size: resample = Image.Resampling.BILINEAR img = img.resize(size=(self.size, self.size), resample=resample) array: np.typing.NDArray[np.int_] = np.array(img.convert('RGB')) tensor = torch.from_numpy(array) tensor = tensor.permute((2, 0, 1)).float() return tensor def _verify(self) -> None: """Verify the integrity of the dataset.""" # Check if the files already exist files = [f'{self.filename}_features.csv', f'{self.filename}_labels.csv'] exists = [os.path.exists(os.path.join(self.root, file)) for file in files] if all(exists): return # Check if the user requested to download the dataset if not self.download: raise DatasetNotFoundError(self) # Download the dataset self._download() def _download(self) -> None: """Download the dataset.""" directory = os.path.join(self.root, self.split) os.makedirs(directory, exist_ok=True) azcopy = which('azcopy') azcopy('sync', f'{self.url}/{self.split}', directory, '--recursive=true') files = [f'{self.filename}_features.csv', f'{self.filename}_labels.csv'] for file in files: azcopy('copy', f'{self.url}/{file}', self.root)
[docs] def plot( self, sample: dict[str, Any], show_titles: bool = True, suptitle: str | None = None, ) -> Figure: """Plot a sample from the dataset. Args: sample: a sample return by :meth:`__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional suptitle to use for figure Returns: a matplotlib Figure with the rendered sample .. versionadded:: 0.2 """ image, label = sample['image'], sample['label'] showing_predictions = 'prediction' in sample if showing_predictions: prediction = sample['prediction'].item() fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow(image.permute(1, 2, 0)) ax.axis('off') if show_titles: title = f'Label: {label}' if showing_predictions: title += f'\nPrediction: {prediction}' ax.set_title(title) if suptitle is not None: plt.suptitle(suptitle) return fig

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources