Shortcuts

Source code for torchgeo.datamodules.vhr10

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""NWPU VHR-10 datamodule."""

from typing import Any

import kornia.augmentation as K
import torch
from torch.utils.data import random_split

from ..datasets import VHR10
from ..samplers.utils import _to_tuple
from .geo import NonGeoDataModule
from .utils import collate_fn_detection


[docs]class VHR10DataModule(NonGeoDataModule): """LightningDataModule implementation for the VHR10 dataset. .. versionadded:: 0.6 """ std = torch.tensor(255)
[docs] def __init__( self, batch_size: int = 64, patch_size: tuple[int, int] | int = 512, num_workers: int = 0, val_split_pct: float = 0.2, test_split_pct: float = 0.2, **kwargs: Any, ) -> None: """Initialize a new VHR10DataModule instance. Args: batch_size: Size of each mini-batch. patch_size: Size of each patch, either ``size`` or ``(height, width)``. num_workers: Number of workers for parallel data loading. val_split_pct: Percentage of the dataset to use as a validation set. test_split_pct: Percentage of the dataset to use as a test set. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.VHR10`. """ super().__init__(VHR10, batch_size, num_workers, **kwargs) self.val_split_pct = val_split_pct self.test_split_pct = test_split_pct self.patch_size = _to_tuple(patch_size) self.collate_fn = collate_fn_detection self.train_aug = K.AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.RandomHorizontalFlip(), K.ColorJiggle(0.1, 0.1, 0.1, 0.1, p=0.7), K.RandomVerticalFlip(), data_keys=None, keepdim=True, ) self.aug = K.AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), data_keys=None, keepdim=True )
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ self.kwargs['transforms'] = K.AugmentationSequential( K.Resize(self.patch_size), data_keys=None, keepdim=True ) self.dataset = VHR10(**self.kwargs) generator = torch.Generator().manual_seed(0) self.train_dataset, self.val_dataset, self.test_dataset = random_split( self.dataset, [ 1 - self.val_split_pct - self.test_split_pct, self.val_split_pct, self.test_split_pct, ], generator, )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources