Shortcuts

Source code for torchgeo.datamodules.skippd

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""SKy Images and Photovoltaic Power Dataset (SKIPP'D) datamodule."""

from typing import Any

import torch
from torch.utils.data import random_split

from ..datasets import SKIPPD
from .geo import NonGeoDataModule


[docs]class SKIPPDDataModule(NonGeoDataModule): """LightningDataModule implementation for the SKIPP'D dataset. Implements 80/20 train/val splits on train_val set. See :func:`setup` for more details. .. versionadded:: 0.5 """
[docs] def __init__( self, batch_size: int = 64, num_workers: int = 0, val_split_pct: float = 0.2, **kwargs: Any, ) -> None: """Initialize a new SKIPPDDataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. val_split_pct: Percentage of the dataset to use as a validation set. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.SKIPPD`. """ super().__init__(SKIPPD, batch_size, num_workers, **kwargs) self.val_split_pct = val_split_pct
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ if stage in ['fit', 'validate']: self.dataset = SKIPPD(split='trainval', **self.kwargs) generator = torch.Generator().manual_seed(0) self.train_dataset, self.val_dataset = random_split( self.dataset, [1 - self.val_split_pct, self.val_split_pct], generator ) if stage in ['test']: self.test_dataset = SKIPPD(split='test', **self.kwargs)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources