Source code for torchgeo.datamodules.patternnet
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""PatternNet datamodule."""
from typing import Any
import kornia.augmentation as K
import torch
from torch.utils.data import random_split
from ..datasets import PatternNet
from .geo import NonGeoDataModule
[docs]class PatternNetDataModule(NonGeoDataModule):
"""LightningDataModule implementation for the PatternNet dataset.
Uses random train/val/test splits.
.. versionadded:: 0.8
"""
mean = torch.tensor([91.48, 91.78, 81.23])
std = torch.tensor([49.74, 47.18, 45.43])
[docs] def __init__(
self,
batch_size: int = 64,
num_workers: int = 0,
val_split_pct: float = 0.2,
test_split_pct: float = 0.2,
**kwargs: Any,
) -> None:
"""Initialize a new PatternNetDataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
val_split_pct: Fraction of dataset to use for validation.
test_split_pct: Fraction of dataset to use for testing.
**kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.PatternNet`.
"""
super().__init__(PatternNet, batch_size, num_workers, **kwargs)
self.val_split_pct = val_split_pct
self.test_split_pct = test_split_pct
self.aug = K.AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.Resize(size=(256, 256)),
data_keys=None,
keepdim=True,
)
self.train_aug = K.AugmentationSequential(
K.Normalize(mean=self.mean, std=self.std),
K.RandomHorizontalFlip(p=0.5),
K.RandomVerticalFlip(p=0.5),
K.Resize(size=(256, 256)),
data_keys=None,
keepdim=True,
)
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
dataset = PatternNet(**self.kwargs)
generator = torch.Generator().manual_seed(0)
train_spilt_pct = 1 - self.val_split_pct - self.test_split_pct
lengths = [train_spilt_pct, self.val_split_pct, self.test_split_pct]
self.train_dataset, self.val_dataset, self.test_dataset = random_split(
dataset, lengths, generator
)