Shortcuts

Source code for torchgeo.datamodules.patternnet

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""PatternNet datamodule."""

from typing import Any

import kornia.augmentation as K
import torch
from torch.utils.data import random_split

from ..datasets import PatternNet
from .geo import NonGeoDataModule


[docs]class PatternNetDataModule(NonGeoDataModule): """LightningDataModule implementation for the PatternNet dataset. Uses random train/val/test splits. .. versionadded:: 0.8 """ mean = torch.tensor([91.48, 91.78, 81.23]) std = torch.tensor([49.74, 47.18, 45.43])
[docs] def __init__( self, batch_size: int = 64, num_workers: int = 0, val_split_pct: float = 0.2, test_split_pct: float = 0.2, **kwargs: Any, ) -> None: """Initialize a new PatternNetDataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. val_split_pct: Fraction of dataset to use for validation. test_split_pct: Fraction of dataset to use for testing. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.PatternNet`. """ super().__init__(PatternNet, batch_size, num_workers, **kwargs) self.val_split_pct = val_split_pct self.test_split_pct = test_split_pct self.aug = K.AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.Resize(size=(256, 256)), data_keys=None, keepdim=True, ) self.train_aug = K.AugmentationSequential( K.Normalize(mean=self.mean, std=self.std), K.RandomHorizontalFlip(p=0.5), K.RandomVerticalFlip(p=0.5), K.Resize(size=(256, 256)), data_keys=None, keepdim=True, )
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ dataset = PatternNet(**self.kwargs) generator = torch.Generator().manual_seed(0) train_spilt_pct = 1 - self.val_split_pct - self.test_split_pct lengths = [train_spilt_pct, self.val_split_pct, self.test_split_pct] self.train_dataset, self.val_dataset, self.test_dataset = random_split( dataset, lengths, generator )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources