Shortcuts

Source code for torchgeo.datamodules.bright

# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.

"""BRIGHT datamodule."""

from typing import Any

import kornia.augmentation as K

from ..datasets import BRIGHTDFC2025
from .geo import NonGeoDataModule


[docs]class BRIGHTDFC2025DataModule(NonGeoDataModule): """LightningDataModule implementation for the BRIGHT dataset. .. versionadded:: 0.8 """
[docs] def __init__( self, batch_size: int = 32, num_workers: int = 0, **kwargs: Any ) -> None: """Initialize a new BRIGHTBRIGHTDFC2025DataModule instance. Args: batch_size: Size of each mini-batch. num_workers: Number of workers for parallel data loading. **kwargs: Additional keyword arguments passed to :class:`~torchgeo.datasets.BRIGHTDFC2025`. """ super().__init__( BRIGHTDFC2025, batch_size=batch_size, num_workers=num_workers, **kwargs ) self.aug = K.AugmentationSequential( K.VideoSequential(K.Normalize(mean=self.mean, std=self.std)), data_keys=None, keepdim=True, )
[docs] def setup(self, stage: str) -> None: """Set up datasets. Args: stage: Either 'fit', 'validate', 'test', or 'predict'. """ if stage in ['fit']: self.train_dataset = BRIGHTDFC2025(split='train', **self.kwargs) if stage in ['fit', 'validate']: self.val_dataset = BRIGHTDFC2025(split='val', **self.kwargs) if stage in ['predict']: # Test set labels are not publicly available self.predict_dataset = BRIGHTDFC2025(split='test', **self.kwargs)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources