Source code for torchgeo.datamodules.bright
# Copyright (c) TorchGeo Contributors. All rights reserved.
# Licensed under the MIT License.
"""BRIGHT datamodule."""
from typing import Any
import kornia.augmentation as K
from ..datasets import BRIGHTDFC2025
from .geo import NonGeoDataModule
[docs]class BRIGHTDFC2025DataModule(NonGeoDataModule):
"""LightningDataModule implementation for the BRIGHT dataset.
.. versionadded:: 0.8
"""
[docs] def __init__(
self, batch_size: int = 32, num_workers: int = 0, **kwargs: Any
) -> None:
"""Initialize a new BRIGHTBRIGHTDFC2025DataModule instance.
Args:
batch_size: Size of each mini-batch.
num_workers: Number of workers for parallel data loading.
**kwargs: Additional keyword arguments passed to
:class:`~torchgeo.datasets.BRIGHTDFC2025`.
"""
super().__init__(
BRIGHTDFC2025, batch_size=batch_size, num_workers=num_workers, **kwargs
)
self.aug = K.AugmentationSequential(
K.VideoSequential(K.Normalize(mean=self.mean, std=self.std)),
data_keys=None,
keepdim=True,
)
[docs] def setup(self, stage: str) -> None:
"""Set up datasets.
Args:
stage: Either 'fit', 'validate', 'test', or 'predict'.
"""
if stage in ['fit']:
self.train_dataset = BRIGHTDFC2025(split='train', **self.kwargs)
if stage in ['fit', 'validate']:
self.val_dataset = BRIGHTDFC2025(split='val', **self.kwargs)
if stage in ['predict']:
# Test set labels are not publicly available
self.predict_dataset = BRIGHTDFC2025(split='test', **self.kwargs)